1
|
Wei L, Liu S, Xie Z, Tang G, Lei X, Yang X. The interaction between m6A modification and noncoding RNA in tumor microenvironment on cancer progression. Int Immunopharmacol 2024; 140:112824. [PMID: 39116490 DOI: 10.1016/j.intimp.2024.112824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Cancer development is thought to be closely related to aberrant epigenetic regulation, aberrant expression of specific non-coding RNAs (ncRNAs), and tumor microenvironment (TME). The m6A methylation is one of the most abundant RNA modifications found in eukaryotes, and it can determine the fate of RNA at the post-transcriptional level through a variety of mechanisms, which affects important biological processes in the organism. The m6A methylation modification is involved in RNA processing, regulation of RNA nuclear export or localisation, RNA degradation and RNA translation. This process affects the function of mRNAs and ncRNAs, thereby influencing the biological processes of cancer cells. TME accelerates and promotes cancer generation and progression during tumor development. The m6A methylation interacting with ncRNAs is closely linked to TME formation. Mutual regulation and interactions between m6A methylation and ncRNAs in TME create complex networks and mediate the progression of various cancers. In this review, we will focus on the interactions between m6A modifications and ncRNAs in TME, summarising the molecular mechanisms by which m6A interacts with ncRNAs to affect TME and their roles in the development of different cancers. This work will help to deepen our understanding of tumourigenesis and further explore new targets for cancer therapy.
Collapse
Affiliation(s)
- Liushan Wei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| | - Shun Liu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| | - Zhizhong Xie
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| | - Guotao Tang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China.
| |
Collapse
|
2
|
Zhang H, Sun F, Jiang S, Yang F, Dong X, Liu G, Wang M, Li Y, Su M, Wen Z, Yu C, Fan C, Li X, Zhang Z, Yang L, Li B. METTL protein family: focusing on the occurrence, progression and treatment of cancer. Biomark Res 2024; 12:105. [PMID: 39289775 PMCID: PMC11409517 DOI: 10.1186/s40364-024-00652-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
Methyltransferase-like protein is a ubiquitous enzyme-like protein in the human body, with binding domains for nucleic acids, proteins and other small molecules, and plays an important role in a variety of biological behaviours in normal organisms and diseases, characterised by the presence of a methyltransferase-like structural domain and a structurally conserved SAM-binding domain formed by the seven-stranded β-fold structure in the center of the protein. With the deepening of research, the METTL protein family has been found to be abnormally expressed in a variety of tumor diseases, and the clarification of its relationship with tumor diseases can be used as a molecular therapeutic target and has an important role in the prognosis of tumors. In this paper, we review the structure, biological process, immunotherapy, drug-targeted therapy, and markers of the METTL protein family to provide new ideas for the diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Huhu Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Fulin Sun
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Shuyao Jiang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Guoxiang Liu
- Department of Clinical Laboratory, Weifang People's Hospital, 151, Guangwen Streer, Weifang, 261041, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Ya Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Mohan Su
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Ziyuan Wen
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Chunjuan Yu
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Chenkai Fan
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhe Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Lina Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Bing Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Department of Dermatology, The Affiliated Haici Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
3
|
Lin H, Li B, Guo J, Mai X, Yu H, Pan W, Wu B, Liu W, Zhong M, Liao T, Zhang Y, Situ B, Yan X, Liu Y, Liu C, Zheng L. Simultaneous detection of membrane protein and mRNA at single extracellular vesicle level by droplet microfluidics for cancer diagnosis. J Adv Res 2024:S2090-1232(24)00369-2. [PMID: 39197817 DOI: 10.1016/j.jare.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/29/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
INTRODUCTION Simultaneous detection of proteins and mRNA within a single extracellular vesicle (EV) enables comprehensive analysis of specific EVs subpopulations, significantly advancing cancer diagnostics. However, developing a sensitive and user-friendly approach for simultaneously detecting multidimensional biomarkers in single EV is still challenging. OBJECTIVES To facilitate the analysis of multidimensional biomarkers in EVs and boost its clinical application, we present a versatile droplet digital system facilitating the concurrent detection of membrane proteins and mRNA at the single EV level with high sensitivity and specificity. METHODS The antibody-DNA conjugates were firstly prepared for EVs protein biomarkers recognition and signal transformation. Coupling with the assembled triplex droplet digital PCR system, a versatile droplet digital analysis assay for simultaneous detection of membrane protein and mRNA at a single EV level was developed. RESULTS Our new droplet digital system displayed high sensitivity and specificity. Additionally, its clinical application was validated in a breast cancer cohort. As expected, this assay has demonstrated superior performance in distinguishing breast cancer from healthy individuals and benign controls through combined detection of EVs protein and mRNA markers compared to any single kind marker detections, especially for patients with breast cancer at early stage (AUC=0.9229). CONCLUSION Consequently, this study proposes a promising strategy for accurately identifying and analyzing specific EV subgroups through the co-detection of proteins and mRNA at the single EV level, holding significant potential for future clinical applications.
Collapse
Affiliation(s)
- Huixian Lin
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bo Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jingyun Guo
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xueying Mai
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haiyang Yu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Weilun Pan
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bodeng Wu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wei Liu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mingzhen Zhong
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Tong Liao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ye Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bo Situ
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaohui Yan
- Medical Research Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yifan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Chunchen Liu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
4
|
Liu X, Xie X, Sui C, Liu X, Song M, Luo Q, Zhan P, Feng J, Liu J. Unraveling the cross-talk between N6-methyladenosine modification and non-coding RNAs in breast cancer: Mechanisms and clinical implications. Int J Cancer 2024; 154:1877-1889. [PMID: 38429857 DOI: 10.1002/ijc.34900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 03/03/2024]
Abstract
In recent years, breast cancer (BC) has surpassed lung cancer as the most common malignant tumor worldwide and remains the leading cause of cancer death in women. The etiology of BC usually involves dysregulation of epigenetic mechanisms and aberrant expression of certain non-coding RNAs (ncRNAs). N6-methyladenosine (m6A), the most prevalent RNA modification in eukaryotes, widely exists in ncRNAs to affect its biosynthesis and function, and is an important regulator of tumor-related signaling pathways. Interestingly, ncRNAs can also regulate or target m6A modification, playing a key role in cancer progression. However, the m6A-ncRNAs regulatory network in BC has not been fully elucidated, especially the regulation of m6A modification by ncRNAs. Therefore, in this review, we comprehensively summarize the interaction mechanisms and biological significance of m6A modifications and ncRNAs in BC. Meanwhile, we also focused on the clinical application value of m6A modification in BC diagnosis and prognosis, intending to explore new biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Xuelong Xie
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Chentao Sui
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Xuexue Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Miao Song
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Qing Luo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Ping Zhan
- Department of Obstetrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jia Feng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China
| |
Collapse
|
5
|
Guo J, Zhao L, Duan M, Yang Z, Zhao H, Liu B, Wang Y, Deng L, Wang C, Jiang X, Jiang X. Demethylases in tumors and the tumor microenvironment: Key modifiers of N 6-methyladenosine methylation. Biomed Pharmacother 2024; 174:116479. [PMID: 38537580 DOI: 10.1016/j.biopha.2024.116479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/09/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024] Open
Abstract
RNA methylation modifications are widespread in eukaryotes and prokaryotes, with N6-methyladenosine (m6A) the most common among them. Demethylases, including Fat mass and obesity associated gene (FTO) and AlkB homolog 5 (ALKBH5), are important in maintaining the balance between RNA methylation and demethylation. Recent studies have clearly shown that demethylases affect the biological functions of tumors by regulating their m6A levels. However, their effects are complicated, and even opposite results have appeared in different articles. Here, we summarize the complex regulatory networks of demethylases, including the most important and common pathways, to clarify the role of demethylases in tumors. In addition, we describe the relationships between demethylases and the tumor microenvironment, and introduce their regulatory mechanisms. Finally, we discuss evaluation of demethylases for tumor diagnosis and prognosis, as well as the clinical application of demethylase inhibitors, providing a strong basis for their large-scale clinical application in the future.
Collapse
Affiliation(s)
- Junchen Guo
- Departmentof Radiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Liang Zhao
- Department of Anorectal Surgery, Shenyang Anorectal Hospital, Shenyang, Liaoning 110002, China
| | - Meiqi Duan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - He Zhao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Baiming Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Yihan Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Liping Deng
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Chen Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Xiaodi Jiang
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110002, China.
| | - Xiaofeng Jiang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China.
| |
Collapse
|
6
|
Zhang C, Chen J, Ren J, Li X, Zhang Y, Huang B, Xu Y, Dong L, Cao Y. N 6-methyladenosine levels in peripheral blood RNA: a potential diagnostic biomarker for colorectal cancer. Cancer Cell Int 2024; 24:96. [PMID: 38439072 PMCID: PMC10913687 DOI: 10.1186/s12935-024-03289-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 02/29/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) is dysregulated in various cancers, including colorectal cancer (CRC). Herein, we assess the diagnostic potential of peripheral blood (PB) m6A levels in CRC. METHODS We collected PB from healthy controls (HCs) and patients with CRC, analyzed PB RNA m6A levels and the expression of m6A-related demethylase genes FTO and ALKBH5, cocultured CRC cells with PB mononuclear cells (PBMCs), and constructed an MC38 cancer model. RESULTS PB RNA m6A levels were higher in the CRC than that in HCs. The area under the curve (AUC) of m6A levels (0.886) in the CRC was significantly larger compared with carbohydrate antigen 199 (CA199; 0.666) and carcinoembryonic antigen (CEA; 0.834). The combination of CEA and CA199 with PB RNA m6A led to an increase in the AUC (0.935). Compared with HCs, the expression of FTO and ALKBH5 was decreased in the CRC. After coculturing with CRC cells, the PBMCs RNA m6A were significantly increased, whereas the expression of FTO and ALKBH5 decreased. Furthermore, m6A RNA levels in the PB of MC38 cancer models were upregulated, whereas the expression of FTO and ALKBH5 decreased. CONCLUSIONS PB RNA m6A levels are a potential diagnostic biomarker for patients with CRC.
Collapse
Affiliation(s)
- Chunying Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiadi Chen
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jingyi Ren
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoyu Li
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yaqin Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Bihan Huang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yihan Xu
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Luyan Dong
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yingping Cao
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
7
|
Ni J, Lu X, Gao X, Jin C, Mao J. Demethylase FTO inhibits the occurrence and development of triple-negative breast cancer by blocking m 6A-dependent miR-17-5p maturation-induced ZBTB4 depletion. Acta Biochim Biophys Sin (Shanghai) 2024; 56:114-128. [PMID: 38151999 PMCID: PMC10875348 DOI: 10.3724/abbs.2023267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/25/2023] [Indexed: 12/29/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer, and its mechanisms of occurrence and development remain unclear. In this study, we aim to investigate the role and molecular mechanisms of the demethylase FTO (fat mass and obesity-associated protein) in TNBC. Through analysis of public databases, we identify that FTO may regulate the maturation of miR-17-5p and subsequently influence the expression of zinc finger and BTB domain-containing protein 4 (ZBTB4), thereby affecting the occurrence and progression of TNBC. We screen for relevant miRNAs and mRNAs from the GEO and TCGA databases and find that the FTO gene may play a crucial role in TNBC. In vitro cell experiments demonstrate that overexpression of FTO can suppress the proliferation, migration, and invasion ability of TNBC cells and can regulate the maturation of miR-17-5p through an m 6A-dependent mechanism. Furthermore, we establish a xenograft nude mouse model and collect clinical samples to further confirm the role and impact of the FTO/miR-17-5p/ZBTB4 regulatory axis in TNBC. Our findings unveil the potential role of FTO and its underlying molecular mechanisms in TNBC, providing new perspectives and strategies for the research and treatment of TNBC.
Collapse
Affiliation(s)
- Jingyi Ni
- Department of OncologyAffiliated Tumor Hospital of Nantong UniversityNantong226361China
| | - Xiaoyun Lu
- Department of PathologyAffiliated Tumor Hospital of Nantong UniversityNantong226361China
| | - Xiangxiang Gao
- Department of OncologyAffiliated Tumor Hospital of Nantong UniversityNantong226361China
| | - Conghui Jin
- Department of OncologyAffiliated Tumor Hospital of Nantong UniversityNantong226361China
| | - Junfeng Mao
- Department of Breast SurgeryAffiliated Tumor Hospital of Nantong UniversityNantong226361China
| |
Collapse
|
8
|
Liu MH, Yu WT, Zhao NN, Qiu JG, Jiang BH, Zhang Y, Zhang CY. Development of a N 6-methyladenosine-directed single quantum dot-based biosensor for sensitive detection of METTL3/14 complex activity in breast cancer tissues. Anal Chim Acta 2023; 1279:341796. [PMID: 37827689 DOI: 10.1016/j.aca.2023.341796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023]
Abstract
The METTL3/14 complex is an important RNA N6-Methyladenosine (m6A) methyltransferase in organisms, and the abnormal METTL3/14 complex activity is associated with the pathogenesis and various cancers. Sensitive detection of METTL3/14 complex is essential to tumor pathogenesis study, cancer diagnosis, and anti-cancer drug discovery. However, traditional methods for METTL3/14 complex assay suffer from poor specificity, costly antibodies, unstable RNA substrates, and low sensitivity. Herein, we construct a single quantum dot (QD)-based förster resonance energy transfer (FRET) biosensor for sensitive detection of METTL3/14 complex activity. In the presence of METTL3/14 complex, it catalyzes the methylation of adenine in the substrate probe, leading to the formation of m6A that protects the substrate probes from MazF-mediated cleavage. The hybridization of methylated DNA substrate with biotinylated capture probe initiates polymerization reaction to obtain a biotinylated double-stranded DNA (dsDNA) with the incorporation of numerous Cy5 fluorophores. Subsequently, the Cy5-incorporated dsDNA can self-assembly onto the 605QD surface to form the 605QD-dsDNA-Cy5 nanostructure, causing FRET between 605QD donor and Cy5 acceptor. This biosensor has excellent sensitivity with a limit of detection (LOD) of 3.11 × 10-17 M, and it can measure the METTL3/14 complex activity in a single cell. Moreover, this biosensor can be used to evaluate the METTL3/14 complex kinetic parameters and screen potential inhibitors. Furthermore, it can differentiate the METTL3/14 complex expression in healthy human tissues and breast cancer patient tissues, providing a powerful tool for cancer pathogenesis study, clinical diagnosis, prognosis monitoring, and drug discovery.
Collapse
Affiliation(s)
- Ming-Hao Liu
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China; College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, 250200, China
| | - Wan-Tong Yu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Ning-Ning Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Jian-Ge Qiu
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Bing-Hua Jiang
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| | - Yan Zhang
- College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, 250200, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
9
|
Huang M, Ming L, Jiang H, Jiang P, Jiang X, Yin H, Hong H. Diagnostic value of aberrant decreased 5-Methylcytosine RNA modification in leukocytes for non-small cell lung cancer. J Cancer 2023; 14:2198-2208. [PMID: 37576401 PMCID: PMC10414042 DOI: 10.7150/jca.85681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
Background: Non-small cell lung cancer (NSCLC) was a disease with poor outcomes, partly because there were no high-efficiency non-invasive diagnostic biomarkers. The RNA modification status of 5-Methylcytosine (m5C) has been shown to be a biomarker for various diseases, but its potentiality to be a diagnostic biomarker for NSCLC remained inconclusive. Methods: In this research, we collected peripheral leukocyte samples from 141 patients with NSCLC and 90 normal people as controls to evaluate the extent of m5C RNA modification. Results: We found that the m5C modification levels in leukocytes of NSCLC patients were decreased dramatically, which were compared to the normal controls, and levels of m5C modification decreased progressively with tumor stage. Importantly, m5C modification exhibited superior diagnostic value compared to carcinoembryonic antigen (CEA), squamous cell carcinoma antigen (SCC), cytokeratin 19 fragment (Cyfra21-1), and carbohydrate antigen 125 (CA125), which demonstrated area under the curves (AUCs) of 0.912, 0.773, 0.669, 0.754, and 0.732, respectively. The combination of m5C modification with these serum tumor biomarkers further improved the AUC to 0.960. A nomogram model incorporating m5C modification also provided an effectively diagnostic tool for NSCLC. Conclusion: Collectively, our findings suggested that m5C modification in leukocytes held promise as a prospective biomarker for NSCLC diagnosis.
Collapse
Affiliation(s)
- Mao Huang
- Department of Clinical Laboratory, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Liang Ming
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hongbo Jiang
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Ping Jiang
- Department of Clinical Medical Laboratory, Guangzhou First' People Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xi Jiang
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Haofan Yin
- Department of Medical Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Honghai Hong
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Tűzesi Á, Hallal S, Satgunaseelan L, Buckland ME, Alexander KL. Understanding the Epitranscriptome for Avant-Garde Brain Tumour Diagnostics. Cancers (Basel) 2023; 15:cancers15041232. [PMID: 36831575 PMCID: PMC9954771 DOI: 10.3390/cancers15041232] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
RNA modifications are diverse, dynamic, and reversible transcript alterations rapidly gaining attention due to their newly defined RNA regulatory roles in cellular pathways and pathogenic mechanisms. The exciting emerging field of 'epitranscriptomics' is predominantly centred on studying the most abundant mRNA modification, N6-methyladenine (m6A). The m6A mark, similar to many other RNA modifications, is strictly regulated by so-called 'writer', 'reader', and 'eraser' protein species. The abundance of genes coding for the expression of these regulator proteins and m6A levels shows great potential as diagnostic and predictive tools across several cancer fields. This review explores our current understanding of RNA modifications in glioma biology and the potential of epitranscriptomics to develop new diagnostic and predictive classification tools that can stratify these highly complex and heterogeneous brain tumours.
Collapse
Affiliation(s)
- Ágota Tűzesi
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Susannah Hallal
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Department of Neurosurgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
| | - Laveniya Satgunaseelan
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Michael E. Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Kimberley L. Alexander
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Department of Neurosurgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
- Correspondence:
| |
Collapse
|
11
|
Jastrzębska M, Giebułtowicz J, Ciechanowicz AK, Wrzesień R, Bielecki W, Bobrowska-Korczak B. Effect of Polyphenols and Zinc Co-Supplementation on the Development of Neoplasms in Rats with Breast Cancer. Foods 2023; 12:foods12020356. [PMID: 36673448 PMCID: PMC9857727 DOI: 10.3390/foods12020356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/29/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
The aim of the study was to evaluate the effect of selected polyphenolic compounds: epicatechin, apigenin, and naringenin, administered separately or in combination with zinc (Zn), on the growth and development of the neoplastic process induced by 7,12-dimethylbenz[a]anthracene (DMBA) in rats. The impact of supplementation with the above-mentioned compounds on the content of modified derivatives: 1-methyladenosine, N6-methyl-2'-deoxyadenosine, O-methylguanosine, 7-methylguanine, 3-methyladenine, 1-methylguanine, 2-amino-6,8-dihydroxypurine, and 8-hydroxy-2'-deoxyguanosine in the urine of rats with mammary cancer was also assessed. Female Sprague-Dawley rats divided into 7 groups were used in the study: animals without supplementation and animals supplemented with apigenin, epicatechin, and naringenin separately or in combination with zinc. To induce mammary cancer, rats were treated with DMBA. Modified derivatives were determined by a validated high-performance liquid chromatography coupled to mass spectrometry method. Based on the obtained results, it can be said that supplementation of the animals with naringenin inhibits the development and progression of the neoplastic process in rats treated with 7,12-dimethylbenzanthracene. Neoplastic tumors were found in only 2 of 8 rats (incidence: 25%) and were considered to be at most grade 1 malignancy. The first palpable tumors in the group of animals receiving naringenin appeared two-three weeks later when compared to other groups. The combination of zinc with flavonoids (apigenin, epicatechin, and naringenin) seems to stimulate the process of carcinogenesis. The level of N6-methyl-2'-deoxyadenosine and 3-methyladenine in the urine of rats was statistically significantly higher in the groups supplemented with apigenin, epicatechin, and naringenin administered in combination with Zn than in the groups receiving only polyphenolic compounds. In conclusion, supplementation of rats with selected flavonoids administered separately or in combination with Zn has an impact on the development of neoplasms and the level of modified nucleosides in the urine of rats with breast cancer. Our results raise the question of whether simultaneous diet supplementation with more than one anti-cancer agent may reduce/stimulate the risk of carcinogenesis.
Collapse
Affiliation(s)
- Martyna Jastrzębska
- Department of Bromatology, Warsaw Medical University, S. Banacha 1 Street, 02-097 Warsaw, Poland
| | - Joanna Giebułtowicz
- Department of Drug Analysis, Warsaw Medical University, S. Banacha 1 Street, 02-097 Warsaw, Poland
| | - Andrzej K. Ciechanowicz
- Laboratory of Regenerative Medicine, Medical University of Warsaw, S. Banacha 1b Street, 02-097 Warsaw, Poland
| | - Robert Wrzesień
- Central Laboratory of Experimental Animals, Warsaw Medical University, S. Banacha 1 Street, 02-097 Warsaw, Poland
| | - Wojciech Bielecki
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Live Sciences, Nowoursynowska 159c Street, 02-787 Warsaw, Poland
| | - Barbara Bobrowska-Korczak
- Department of Bromatology, Warsaw Medical University, S. Banacha 1 Street, 02-097 Warsaw, Poland
- Correspondence: ; Tel.: +48-225720789
| |
Collapse
|
12
|
Verghese M, Wilkinson E, He YY. Recent Advances in RNA m 6A Modification in Solid Tumors and Tumor Immunity. Cancer Treat Res 2023; 190:95-142. [PMID: 38113000 DOI: 10.1007/978-3-031-45654-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
An analogous field to epigenetics is referred to as epitranscriptomics, which focuses on the study of post-transcriptional chemical modifications in RNA. RNA molecules, including mRNA, tRNA, rRNA, and other non-coding RNA molecules, can be edited with numerous modifications. The most prevalent modification in eukaryotic mRNA is N6-methyladenosine (m6A), which is a reversible modification found in over 7000 human genes. Recent technological advances have accelerated the characterization of these modifications, and they have been shown to play important roles in many biological processes, including pathogenic processes such as cancer. In this chapter, we discuss the role of m6A mRNA modification in cancer with a focus on solid tumor biology and immunity. m6A RNA methylation and its regulatory proteins can play context-dependent roles in solid tumor development and progression by modulating RNA metabolism to drive oncogenic or tumor-suppressive cellular pathways. m6A RNA methylation also plays dynamic roles within both immune cells and tumor cells to mediate the anti-tumor immune response. Finally, an emerging area of research within epitranscriptomics studies the role of m6A RNA methylation in promoting sensitivity or resistance to cancer therapies, including chemotherapy, targeted therapy, and immunotherapy. Overall, our understanding of m6A RNA methylation in solid tumors has advanced significantly, and continued research is needed both to fill gaps in knowledge and to identify potential areas of focus for therapeutic development.
Collapse
Affiliation(s)
- Michelle Verghese
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA
- Pritzker School of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Emma Wilkinson
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
13
|
Fang Y, Xu Y, Liao W, Ji T, Yu L, Li L, Pan M, Yang D. Multiomics analyses and machine learning of nuclear receptor coactivator 6 reveal its essential role in hepatocellular carcinoma. Cancer Sci 2022; 114:75-90. [PMID: 36086920 PMCID: PMC9807532 DOI: 10.1111/cas.15577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 01/07/2023] Open
Abstract
Nuclear receptor coactivator 6 (NCOA6), a coactivator of numerous nuclear receptors and transcription factors, regulates multiple critical cellular functions. Nuclear receptor coactivator 6 is dysregulated in various cancers, including hepatocellular carcinoma (HCC); however, its role remains largely unknown. Here we reported that NCOA6 was highly expressed in HCC compared to the adjacent liver tissue, and NCOA6 overexpression was significantly correlated with poor HCC prognosis. Experiments revealed that the knockdown of NCOA6 damaged the proliferation, migration, and invasion of HCC cells. Multiomics and immune infiltration analyses showed a close relationship between NCOA6 expression, multiple cancer-related malignant pathways, and the immunosuppressive microenvironment. Finally, we established an effective NCOA6-related microRNA (miRNA) signature to distinguish HCC from hepatitis\liver cirrhosis patients. To the best of our knowledge, this study is the first to provide a comprehensive analysis of NCOA6 expression in HCC. We found that NCOA6 plays an important role in HCC development and has a potential mechanism of action. Establishing an NCOA6-related miRNA signature will help develop novel diagnostic strategies for HCC patients.
Collapse
Affiliation(s)
- Yinghao Fang
- Unit of Hepatobiliary Surgery, General Surgery DepartmentNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Yuyan Xu
- General Surgery Center, Department of Hepatobiliary Surgery IIGuangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Wei Liao
- Unit of Hepatobiliary Surgery, General Surgery DepartmentNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Tao Ji
- Unit of Hepatobiliary Surgery, General Surgery DepartmentNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Linyuan Yu
- Unit of Hepatobiliary Surgery, General Surgery DepartmentNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Longhai Li
- Unit of Hepatobiliary Surgery, General Surgery DepartmentNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Mingxin Pan
- General Surgery Center, Department of Hepatobiliary Surgery IIGuangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Dinghua Yang
- Unit of Hepatobiliary Surgery, General Surgery DepartmentNanfang Hospital, Southern Medical UniversityGuangzhouChina
| |
Collapse
|
14
|
Zhang X, Zhang X, Liu T, Zhang Z, Piao C, Ning H. METTL14 promotes migration and invasion of choroidal melanoma by targeting RUNX2 mRNA via m6A modification. J Cell Mol Med 2022; 26:5602-5613. [PMID: 36264762 DOI: 10.1111/jcmm.17577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022] Open
Abstract
The modification of N6-methyladenosine is involved in the progression of various cancers. This study aimed to clarify its regulatory mechanism in the pathogenesis of choroidal melanoma. Expression of methyltransferase-like 14 in choroidal melanoma or normal choroidal tissues was determined by Western blot and immunohistochemistry. The impacts of methyltransferase-like 14 on invasion and migration of choroidal melanoma cells were determined using functional and animal experiments. The interaction between methyltransferase-like 14 and its downstream target was identified by methylated RNA immunoprecipitation and a dual-luciferase reporter assay. Additionally, Wnt/β-catenin signalling pathway was evaluated by Western blot. Methyltransferase-like 14 was upregulated in choroidal melanoma compared to the normal choroidal tissues. Overexpression or knockdown of methyltransferase-like 14 enhanced or inhibited the invasion and migration of choroidal melanoma cells, respectively, both in vivo and in vitro. Methyltransferase-like 14 directly targeted downstream runt-related transcription factor 2 mRNA, depending on N6-methyladenosine. Additionally, the Wnt/β-catenin signalling pathway was activated by methyltransferase-like 14 in choroidal melanoma cells. Our study identified a novel RNA regulatory mechanism in which runt-related transcription factor 2 was upregulated by enhanced expression of methyltransferase-like 14 via N6-methyladenosine modification, thus facilitating migration and invasion of choroidal melanoma cells.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaonan Zhang
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tengyue Liu
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhe Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chiyuan Piao
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hong Ning
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
15
|
Methyladenosine Modification in RNAs: From Regulatory Roles to Therapeutic Implications in Cancer. Cancers (Basel) 2022; 14:cancers14133195. [PMID: 35804965 PMCID: PMC9264946 DOI: 10.3390/cancers14133195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cancer remains a burden to the public health all over the world. An increasing number of studies have concentrated on the role of methyladenosine modifications on cancers. Methyladenosine modifications mainly include N6-methyladenosine (m6A), N1-methyladenosine (m1A), and 2’-O-methyladenosine (m6Am), of which dynamic changes could modulate the metabolism of RNAs in eukaryotic cells. Mounting evidence has confirmed the crucial role of methyladenosine modification in cancer, offering possibilities for cancer therapy. In this review, we discussed the regulatory role of methyladenosine modification on cancer, as well as their potential for treatment. Abstract Methyladenosine modifications are the most abundant RNA modifications, including N6-methyladenosine (m6A), N1-methyladenosine (m1A), and 2’-O-methyladenosine (m6Am). As reversible epigenetic modifications, methyladenosine modifications in eukaryotic RNAs are not invariable. Drastic alterations of m6A are found in a variety of diseases, including cancers. Dynamic changes of m6A modification induced by abnormal methyltransferase, demethylases, and readers can regulate cancer progression via interfering with the splicing, localization, translation, and stability of mRNAs. Meanwhile, m6A, m1A, and m6Am modifications also exert regulatory effects on noncoding RNAs in cancer progression. In this paper, we reviewed recent findings concerning the underlying biomechanism of methyladenosine modifications in oncogenesis and metastasis and discussed the therapeutic potential of methyladenosine modifications in cancer treatments.
Collapse
|
16
|
Guan Q, Lin H, Miao L, Guo H, Chen Y, Zhuo Z, He J. Functions, mechanisms, and therapeutic implications of METTL14 in human cancer. J Hematol Oncol 2022; 15:13. [PMID: 35115038 PMCID: PMC8812173 DOI: 10.1186/s13045-022-01231-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
RNA modification plays a crucial role in many biological functions, and its abnormal regulation is associated with the progression of cancer. Among them, N6-methyladenine (m6A) is the most abundant RNA modification. Methyltransferase-like 14 (METTL14) is the central component of the m6A methylated transferase complex, which is involved in the dynamic reversible process of m6A modification. METTL14 acts as both an oncogene and tumor suppressor gene to regulate the occurrence and development of various cancers. The abnormal m6A level induced by METTL14 is related to tumorigenesis, proliferation, metastasis, and invasion. To date, the molecular mechanism of METTL14 in various malignant tumors has not been fully studied. In this paper, we systematically summarize the latest research progress on METTL14 as a new biomarker for cancer diagnosis and its biological function in human tumors and discuss its potential clinical application. This study aims to provide new ideas for targeted therapy and improved prognoses in cancer.
Collapse
Affiliation(s)
- Qian Guan
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Huiran Lin
- Faculty of Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Huiqin Guo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yongping Chen
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
17
|
Abstract
Recent studies have revealed the significant dysregulation of m6A level in peripheral blood in several cancer types and its value in diagnosis. Nonetheless, a biomarker for accurate screening of multiple cancer types has not been established based on the perspective of m6A modification. In this study, we aimed to develop a serum diagnostic signature based on the m6A target miRNAs for the mass detection of cancer. A total of 14965 serum samples with 12 cancer types were included. Based on training cohort (n=7299), we developed the m6A-miRNAs signature using a support vector machine algorithm for cancer detection. The m6A-miRNAs signature showed high accuracy, and its area under the curve (AUC) in the training, internal validation and external validation cohort reached 0.979 (95%CI 0.976 - 0.982), 0.976 (95%CI 0.973 - 0.979) and 0.936 (95%CI 0.922 - 0.951), respectively. In the performance of distinguishing cancer types, the m6A-miRNAs signature showed superior sensitivity in each cancer type and presented a satisfactory AUC in identifying lung cancer, gastric cancer and hepatocellular carcinoma. Additionally, the diagnostic performance of m6A-miRNAs was not interfered by the gender, age and benign disease. In short, this study revealed the value of serum circulating m6A miRNAs in cancer detection and provided a new direction and strategy for the development of novel biomarkers with high accuracy, low cost and less invasiveness for mass cancer screening, such as RNA modification.
Collapse
|
18
|
Kumari K, Groza P, Aguilo F. Regulatory roles of RNA modifications in breast cancer. NAR Cancer 2021; 3:zcab036. [PMID: 34541538 PMCID: PMC8445368 DOI: 10.1093/narcan/zcab036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/07/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Collectively referred to as the epitranscriptome, RNA modifications play important roles in gene expression control regulating relevant cellular processes. In the last few decades, growing numbers of RNA modifications have been identified not only in abundant ribosomal (rRNA) and transfer RNA (tRNA) but also in messenger RNA (mRNA). In addition, many writers, erasers and readers that dynamically regulate the chemical marks have also been characterized. Correct deposition of RNA modifications is prerequisite for cellular homeostasis, and its alteration results in aberrant transcriptional programs that dictate human disease, including breast cancer, the most frequent female malignancy, and the leading cause of cancer-related death in women. In this review, we emphasize the major RNA modifications that are present in tRNA, rRNA and mRNA. We have categorized breast cancer-associated chemical marks and summarize their contribution to breast tumorigenesis. In addition, we describe less abundant tRNA modifications with related pathways implicated in breast cancer. Finally, we discuss current limitations and perspectives on epitranscriptomics for use in therapeutic strategies against breast and other cancers.
Collapse
Affiliation(s)
- Kanchan Kumari
- Department of Molecular Biology, Umeå University, SE-901 85 Umeå, Sweden
| | - Paula Groza
- Department of Molecular Biology, Umeå University, SE-901 85 Umeå, Sweden
| | - Francesca Aguilo
- Department of Molecular Biology, Umeå University, SE-901 85 Umeå, Sweden
| |
Collapse
|
19
|
Song Y, Zheng C, Tao Y, Huang R, Zhang Q. N6-Methyladenosine Regulators Are Involved in the Progression of and Have Clinical Impact on Breast Cancer. Med Sci Monit 2021; 27:e929615. [PMID: 34349094 PMCID: PMC8353996 DOI: 10.12659/msm.929615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background N6-methyladenosine (m6A) modification has been widely studied in various cancers, and m6A regulators, such as METTL3, METTL14, WTAP, and YTHDF1, play crucial roles in breast cancer. However, a comprehensive study of m6A regulators in breast cancer is still lacking. Material/Methods Expression data of m6A regulators and clinicopathological information were acquired from The Cancer Genome Atlas (TCGA) program. Protein interaction was collected from the STRING database. Data on tumor purity and correlation among m6A regulators were obtained from the TIMER database. LASSO, consensus clustering, and gene set enrichment analysis (GSEA) were used to evaluate the role of m6A regulators. Moreover, the prognostic value of m6A-related genomic targets in breast cancer was analyzed by Kaplan-Meier analysis and Cox regression models. Results We found most m6A regulators were associated with key clinicopathological parameters, such as tumor staging, Nottingham prognostic index (NPI), and cellularity. Also, consensus clustering analysis-based grouping could effectively predict patients’ overall survival. Correlation analysis also showed that these regulators interacted with each other. Patients were further split into a high-risk group and low-risk group based on Cox and LASSO analysis. High-risk patients had a significantly worse overall survival than did low-risk patients. Moreover, AKT1 and MYC were enriched in patients in the high-risk group, according to GSEA analysis. The patients in the high-risk group also displayed resistance to chemoradiotherapy or hormone therapy. Conclusions The m6A regulators are critical participants in the development and progression of breast cancer and are likely to be used to predict prognosis and develop treatment strategies.
Collapse
Affiliation(s)
- Yanni Song
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China (mainland).,Department of Plastic and Cosmetic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Chaojing Zheng
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Yangbao Tao
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Rui Huang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Qian Zhang
- Department of Colorectal Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
20
|
Sikorski V, Karjalainen P, Blokhina D, Oksaharju K, Khan J, Katayama S, Rajala H, Suihko S, Tuohinen S, Teittinen K, Nummi A, Nykänen A, Eskin A, Stark C, Biancari F, Kiss J, Simpanen J, Ropponen J, Lemström K, Savinainen K, Lalowski M, Kaarne M, Jormalainen M, Elomaa O, Koivisto P, Raivio P, Bäckström P, Dahlbacka S, Syrjälä S, Vainikka T, Vähäsilta T, Tuncbag N, Karelson M, Mervaala E, Juvonen T, Laine M, Laurikka J, Vento A, Kankuri E. Epitranscriptomics of Ischemic Heart Disease-The IHD-EPITRAN Study Design and Objectives. Int J Mol Sci 2021; 22:6630. [PMID: 34205699 PMCID: PMC8235045 DOI: 10.3390/ijms22126630] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022] Open
Abstract
Epitranscriptomic modifications in RNA can dramatically alter the way our genetic code is deciphered. Cells utilize these modifications not only to maintain physiological processes, but also to respond to extracellular cues and various stressors. Most often, adenosine residues in RNA are targeted, and result in modifications including methylation and deamination. Such modified residues as N-6-methyl-adenosine (m6A) and inosine, respectively, have been associated with cardiovascular diseases, and contribute to disease pathologies. The Ischemic Heart Disease Epitranscriptomics and Biomarkers (IHD-EPITRAN) study aims to provide a more comprehensive understanding to their nature and role in cardiovascular pathology. The study hypothesis is that pathological features of IHD are mirrored in the blood epitranscriptome. The IHD-EPITRAN study focuses on m6A and A-to-I modifications of RNA. Patients are recruited from four cohorts: (I) patients with IHD and myocardial infarction undergoing urgent revascularization; (II) patients with stable IHD undergoing coronary artery bypass grafting; (III) controls without coronary obstructions undergoing valve replacement due to aortic stenosis and (IV) controls with healthy coronaries verified by computed tomography. The abundance and distribution of m6A and A-to-I modifications in blood RNA are charted by quantitative and qualitative methods. Selected other modified nucleosides as well as IHD candidate protein and metabolic biomarkers are measured for reference. The results of the IHD-EPITRAN study can be expected to enable identification of epitranscriptomic IHD biomarker candidates and potential drug targets.
Collapse
Affiliation(s)
- Vilbert Sikorski
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (V.S.); (D.B.); (E.M.)
| | - Pasi Karjalainen
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Daria Blokhina
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (V.S.); (D.B.); (E.M.)
| | - Kati Oksaharju
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Jahangir Khan
- Tampere Heart Hospital, Tampere University Hospital, 33520 Tampere, Finland; (J.K.); (J.L.)
| | | | - Helena Rajala
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Satu Suihko
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Suvi Tuohinen
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Kari Teittinen
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Annu Nummi
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Antti Nykänen
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Arda Eskin
- Graduate School of Informatics, Department of Health Informatics, Middle East Technical University, 06800 Ankara, Turkey;
| | - Christoffer Stark
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Fausto Biancari
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
- Heart Center, Turku University Hospital and Department of Surgery, University of Turku, 20521 Turku, Finland
- Research Unit of Surgery, Anesthesiology and Critical Care, University of Oulu, 90014 Oulu, Finland
| | - Jan Kiss
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Jarmo Simpanen
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Jussi Ropponen
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Karl Lemström
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Kimmo Savinainen
- Clinical Biobank Tampere, Tampere University Hospital, 33520 Tampere, Finland;
| | - Maciej Lalowski
- Helsinki Institute of Life Science (HiLIFE), Meilahti Clinical Proteomics Core Facility, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland;
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Department of Biomedical Proteomics, 61-704 Poznan, Poland
| | - Markku Kaarne
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Mikko Jormalainen
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Outi Elomaa
- Folkhälsan Research Center, 00250 Helsinki, Finland; (S.K.); (O.E.)
| | - Pertti Koivisto
- Chemistry Unit, Finnish Food Authority, 00790 Helsinki, Finland;
| | - Peter Raivio
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Pia Bäckström
- Helsinki Biobank, Hospital District of Helsinki and Uusimaa, 00029 Helsinki, Finland;
| | - Sebastian Dahlbacka
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Simo Syrjälä
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Tiina Vainikka
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Tommi Vähäsilta
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Nurcan Tuncbag
- Department of Chemical and Biological Engineering, College of Engineering, Koç University, 34450 Istanbul, Turkey;
- School of Medicine, Koç University, 34450 Istanbul, Turkey
| | - Mati Karelson
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia;
| | - Eero Mervaala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (V.S.); (D.B.); (E.M.)
| | - Tatu Juvonen
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
- Research Unit of Surgery, Anesthesiology and Critical Care, University of Oulu, 90014 Oulu, Finland
| | - Mika Laine
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Jari Laurikka
- Tampere Heart Hospital, Tampere University Hospital, 33520 Tampere, Finland; (J.K.); (J.L.)
| | - Antti Vento
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland; (P.K.); (K.O.); (H.R.); (S.S.); (S.T.); (K.T.); (A.N.); (A.N.); (C.S.); (F.B.); (J.K.); (J.S.); (J.R.); (K.L.); (M.K.); (M.J.); (P.R.); (S.D.); (S.S.); (T.V.); (T.V.); (T.J.); (M.L.); (A.V.)
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (V.S.); (D.B.); (E.M.)
| |
Collapse
|
21
|
Zhang Y, Wang Y, Ying L, Tao S, Shi M, Lin P, Wang Y, Han B. Regulatory Role of N6-methyladenosine (m 6A) Modification in Osteosarcoma. Front Oncol 2021; 11:683768. [PMID: 34094986 PMCID: PMC8170137 DOI: 10.3389/fonc.2021.683768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/30/2021] [Indexed: 12/30/2022] Open
Abstract
Osteosarcoma is the most common primary bone malignancy, typically occurring in childhood or adolescence. Unfortunately, the clinical outcomes of patients with osteosarcoma are usually poor because of the aggressive nature of this disease and few treatment advances in the past four decades. N6-methyladenosine (m6A) is one of the most extensive forms of RNA modification in eukaryotes found both in coding and non-coding RNAs. Accumulating evidence suggests that m6A-related factors are dysregulated in multiple osteosarcoma processes. In this review, we highlight m6A modification implicated in osteosarcoma, describing its pathophysiological role and molecular mechanism, as well as future research trends and potential clinical application in osteosarcoma.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanyan Wang
- Department of Oncology Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liwei Ying
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sifeng Tao
- Department of Oncology Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingmin Shi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yangxin Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Han
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|