1
|
Hernandez S, Conde E, Molero A, Suarez-Gauthier A, Martinez R, Alonso M, Plaza C, Camacho C, Chantada D, Juaneda-Magdalena L, Garcia-Toro E, Saiz-Lopez P, Rojo F, Abad M, Boni V, Del Carmen S, Regojo RM, Sanchez-Frias ME, Teixido C, Paz-Ares L, Lopez-Rios F. Efficient Identification of Patients With NTRK Fusions Using a Supervised Tumor-Agnostic Approach. Arch Pathol Lab Med 2024; 148:318-326. [PMID: 37270803 DOI: 10.5858/arpa.2022-0443-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 06/06/2023]
Abstract
CONTEXT.— The neurotrophic tropomyosin receptor kinase (NTRK) family gene rearrangements have been recently incorporated as predictive biomarkers in a "tumor-agnostic" manner. However, the identification of these patients is extremely challenging because the overall frequency of NTRK fusions is below 1%. Academic groups and professional organizations have released recommendations on the algorithms to detect NTRK fusions. The European Society for Medical Oncology proposal encourages the use of next-generation sequencing (NGS) if available, or alternatively immunohistochemistry (IHC) could be used for screening with NGS confirmation of all positive IHC results. Other academic groups have included histologic and genomic information in the testing algorithm. OBJECTIVE.— To apply some of these triaging strategies for a more efficient identification of NTRK fusions within a single institution, so pathologists can gain practical insight on how to start looking for NTRK fusions. DESIGN.— A multiparametric strategy combining histologic (secretory carcinomas of the breast and salivary gland; papillary thyroid carcinomas; infantile fibrosarcoma) and genomic (driver-negative non-small cell lung carcinomas, microsatellite instability-high colorectal adenocarcinomas, and wild-type gastrointestinal stromal tumors) triaging was put forward. RESULTS.— Samples from 323 tumors were stained with the VENTANA pan-TRK EPR17341 Assay as a screening method. All positive IHC cases were simultaneously studied by 2 NGS tests, Oncomine Comprehensive Assay v3 and FoundationOne CDx. With this approach, the detection rate of NTRK fusions was 20 times higher (5.57%) by only screening 323 patients than the largest cohort in the literature (0.30%) comprising several hundred thousand patients. CONCLUSIONS.— Based on our findings, we propose a multiparametric strategy (ie, "supervised tumor-agnostic approach") when pathologists start searching for NTRK fusions.
Collapse
Affiliation(s)
- Susana Hernandez
- From the Department of Pathology, 12 de Octubre University Hospital, Research Institute 12 de Octubre University Hospital (i+12), Madrid, Spain (Hernandez, Alonso)
| | - Esther Conde
- the Department of Pathology, 12 de Octubre University Hospital, Universidad Complutense de Madrid, Research Institute 12 de Octubre University Hospital (i+12), CIBERONC, Madrid, Spain (Conde, Lopez-Rios)
| | - Aida Molero
- the Department of Pathology, Segovia General Hospital, Segovia, Spain (Molero)
| | - Ana Suarez-Gauthier
- the Department of Pathology, Jimenez Diaz Foundation University Hospital, Madrid, Spain (Suarez-Gauthier)
| | - Rebeca Martinez
- the Department of Pathology, Health Diagnostic-Grupo Quiron Salud, Madrid, Spain (Martinez)
| | - Marta Alonso
- From the Department of Pathology, 12 de Octubre University Hospital, Research Institute 12 de Octubre University Hospital (i+12), Madrid, Spain (Hernandez, Alonso)
| | - Carlos Plaza
- the Department of Pathology, Clinico San Carlos University Hospital, Madrid, Spain (Plaza)
| | - Carmen Camacho
- the Department of Pathology, Insular Materno-Infantil University Hospital, Las Palmas de Gran Canaria, Spain (Camacho)
| | - Debora Chantada
- the Department of Pathology, Alvaro Cunqueiro Hospital, Vigo, Spain (Chantada, Juaneda-Magdalena)
| | - Laura Juaneda-Magdalena
- the Department of Pathology, Alvaro Cunqueiro Hospital, Vigo, Spain (Chantada, Juaneda-Magdalena)
| | - Enrique Garcia-Toro
- the Department of Pathology, Burgos University Hospital, Burgos, Spain (Garcia-Toro, Saiz-Lopez)
| | - Patricia Saiz-Lopez
- the Department of Pathology, Burgos University Hospital, Burgos, Spain (Garcia-Toro, Saiz-Lopez)
| | - Federico Rojo
- the Institute of Health Research-Jimenez Diaz Foundation, CIBERONC, Madrid, Spain (Rojo)
| | - Mar Abad
- the Department of Pathology, Salamanca University Hospital, Salamanca, Spain (Abad)
| | - Valentina Boni
- NEXT Oncology Madrid, Quiron Salud Madrid University Hospital, Madrid, Spain (Boni)
| | - Sofia Del Carmen
- the Department of Pathology, Marques de Valdecilla University Hospital, Santander, Spain (del Carmen)
| | - Rita Maria Regojo
- the Department of Pathology, La Paz University Hospital, Madrid, Spain (Regojo)
| | | | - Cristina Teixido
- the Department of Pathology, Thoracic Oncology Unit, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain (Teixido)
| | - Luis Paz-Ares
- the Department of Oncology, 12 de Octubre University Hospital, Department of Medicine, Universidad Complutense de Madrid, Research Institute 12 de Octubre University Hospital (i+12), CIBERONC, Madrid, Spain (Paz-Ares)
| | - Fernando Lopez-Rios
- the Department of Pathology, 12 de Octubre University Hospital, Universidad Complutense de Madrid, Research Institute 12 de Octubre University Hospital (i+12), CIBERONC, Madrid, Spain (Conde, Lopez-Rios)
| |
Collapse
|
3
|
Lee SE, Lee MS, Bang H, Kim MY, Choi YL, Oh YL. NTRK Fusion in a Cohort of BRAF p. V600E Wild-Type Papillary Thyroid Carcinomas. Mod Pathol 2023; 36:100180. [PMID: 37003481 DOI: 10.1016/j.modpat.2023.100180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
Owing to the availability of a potent tropomyosin receptor kinase (TRK) inhibitor, it is necessary to develop an effective strategy to identify an enriched population of NTRK fusions in papillary thyroid carcinoma (PTC) in routine diagnostic practice. The reported prevalence of NTRK fusion in a large cohort of PTC is ∼3%. We performed an analysis to refine the characteristic histologic features of PTCs harboring NTRK fusions and further validate the diagnostic utility of pan-TRK immunohistochemistry as a screening tool. In this study, 450 PTCs known to harbor no BRAF p. V600E mutations were screened by pan-TRK immunohistochemistry, and the cases with TRK expression were confirmed by RNA-based next-generation sequencing assay. Eleven NTRK fusion cases were detected (2.4%), and all PTCs were classical subtypes. NTRK1 and NTRK3 were involved in the fusion with 9 different partner genes. Most cases showed similar characteristic histologic findings. Nodular permeative border, multinodular growth with a predominantly follicular pattern, extensive lymphatic invasion, and prominent internodular and intratumoral fibrosis were the characteristic histologic features of NTRK-rearranged PTCs. The ill-defined margins in the ultrasonography findings, which could not be clearly distinguished from the adjacent nontumorous thyroid tissue, were nodular permeative margins in histologic findings. Therefore, preoperative ultrasonographic findings in nodule margins were consistent with the final histologic findings. NTRK1/3 fusion in PTCs showed an overall sensitivity of 100% (95% CI, 71.51%-100%) and specificity of 100% (95% CI, 71.51%-100%) in the 22 cases examined, as confirmed with next-generation sequencing. Our study provides an integrative report of the preoperative ultrasonographic, histologic, immunohistochemical, and molecular features of NTRK-rearranged PTCs. Based on these findings, we propose an algorithmic approach for the stepwise assessment of NTRK fusions in PTCs.
Collapse
Affiliation(s)
- Seung Eun Lee
- Department of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Mi-Sook Lee
- Laboratory of Molecular Pathology and Theranostics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Heejin Bang
- Department of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Mi Young Kim
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Yoon-La Choi
- Laboratory of Molecular Pathology and Theranostics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea; Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Young Lyun Oh
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
4
|
Stockley TL, Lo B, Box A, Corredor AG, DeCoteau J, Desmeules P, Feilotter H, Grafodatskaya D, Greer W, Hawkins C, Huang WY, Izevbaye I, Lépine G, Martins Filho SN, Papadakis AI, Park PC, Riviere JB, Sheffield BS, Spatz A, Spriggs E, Tran-Thanh D, Yip S, Zhang T, Torlakovic E, Tsao MS. CANTRK: A Canadian Ring Study to Optimize Detection of NTRK Gene Fusions by Next-Generation RNA Sequencing. J Mol Diagn 2023; 25:168-174. [PMID: 36586421 DOI: 10.1016/j.jmoldx.2022.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/01/2022] [Accepted: 12/06/2022] [Indexed: 12/29/2022] Open
Abstract
The Canadian NTRK (CANTRK) study is an interlaboratory comparison ring study to optimize testing for neurotrophic receptor tyrosine kinase (NTRK) fusions in Canadian laboratories. Sixteen diagnostic laboratories used next-generation sequencing (NGS) for NTRK1, NTRK2, or NTRK3 fusions. Each laboratory received 12 formalin-fixed, paraffin-embedded tumor samples with unique NTRK fusions and two control non-NTRK fusion samples (one ALK and one ROS1). Laboratories used validated protocols for NGS fusion detection. Panels included Oncomine Comprehensive Assay v3, Oncomine Focus Assay, Oncomine Precision Assay, AmpliSeq for Illumina Focus, TruSight RNA Pan-Cancer Panel, FusionPlex Lung, and QIAseq Multimodal Lung. One sample was withdrawn from analysis because of sample quality issues. Of the remaining 13 samples, 6 of 11 NTRK fusions and both control fusions were detected by all laboratories. Two fusions, WNK2::NTRK2 and STRN3::NTRK2, were not detected by 10 laboratories using the Oncomine Comprehensive or Focus panels, due to absence of WNK2 and STRN3 in panel designs. Two fusions, TPM3::NTRK1 and LMNA::NTRK1, were challenging to detect on the AmpliSeq for Illumina Focus panel because of bioinformatics issues. One ETV6::NTRK3 fusion at low levels was not detected by two laboratories using the TruSight Pan-Cancer Panel. Panels detecting all fusions included FusionPlex Lung, Oncomine Precision, and QIAseq Multimodal Lung. The CANTRK study showed competency in detection of NTRK fusions by NGS across different panels in 16 Canadian laboratories and identified key test issues as targets for improvements.
Collapse
Affiliation(s)
- Tracy L Stockley
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Advanced Molecular Diagnostics Laboratory, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
| | - Bryan Lo
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Adrian Box
- Alberta Precision Labs, Calgary, Alberta, Canada
| | | | - John DeCoteau
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Patrice Desmeules
- IUCPQ-UL, Quebec Heart and Lung Institute, Quebec City, Quebec, Canada
| | - Harriet Feilotter
- Kingston Health Sciences Centre, Kingston, Ontario, Canada; Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Daria Grafodatskaya
- Hamilton Health Sciences Centre, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Wenda Greer
- Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | - Cynthia Hawkins
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Weei Yuarn Huang
- Nova Scotia Health Authority, Halifax, Nova Scotia, Canada; Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Iyare Izevbaye
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Sebastiao N Martins Filho
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Paul C Park
- Shared Health Manitoba, Winnipeg, Manitoba, Canada
| | | | | | - Alan Spatz
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | | | - Danh Tran-Thanh
- CHUM-Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Stephen Yip
- BC Cancer, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Tong Zhang
- Advanced Molecular Diagnostics Laboratory, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Emina Torlakovic
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ming Sound Tsao
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|