Abidin İ, Keser H, Şahin E, Öztürk H, Başoğlu H, Alver A, Aydin-Abidin S. Effects of housing conditions on stress, depressive like behavior and sensory-motor performances of C57BL/6 mice.
Lab Anim Res 2024;
40:6. [PMID:
38369507 PMCID:
PMC10874523 DOI:
10.1186/s42826-024-00193-8]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND
The effects of housing conditions on animal physiology, behavior or stress are still debated. The aim of this study was to investigate the effects of three different housing systems, individually ventilated cages (IVC), classical small cages with floor surface area of 500 cm2 (CC500) and classical large cages with floor surface area of 800 cm2 (CC800) on body weight, sensory-motor performances, depression-like behavior, plasma corticosterone and brain oxidative stress parameters in C57BL/6 mice. The mice housed in one of the cages from birth to 6 months of age. Hang wire and adhesive removal tests were performed to evaluate somatosensory and motor performances. The extent of depression was determined by the forced swim test. Blood corticosterone levels were measured. In addition, brain malondialdehyde (MDA), total antioxidant status (TAS) and total oxidant status (TOS) levels were analyzed.
RESULTS
The depression-like behavior of the groups was similar. Although there were no significant differences in hang wire test among groups, CC500 group required longer durations in adhesive removal test. The body weight and plasma corticosterone levels of CC800 group were significantly higher than other groups. The oxidative stress parameters were highest in CC500 cage.
CONCLUSIONS
Our study showed that the least stressful housing condition was IVC cage systems. Interestingly, the number of mice in the classical cages had a significant effect on stress levels and sensory-motor performance.
Collapse