1
|
Peng M, Zhao S, Hu Y, Zhang L, Zhou T, Wu M, Xu M, Jiang K, Huang Y, Li D, Lun ZR, Wu Z, Shen J. Nitric oxide-induced endoplasmic reticulum stress of Schistosoma japonicum inhibits the worm development in rats. Free Radic Biol Med 2024; 212:295-308. [PMID: 38141890 DOI: 10.1016/j.freeradbiomed.2023.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
Schistosomiasis, caused by Schistosoma spp., is a zoonotic parasitic disease affecting human health. Rattus norvegicus (rats) are a non-permissive host of Schistosoma, in which the worms cannot mature and cause typical egg granuloma. We previously demonstrated that inherent high levels of nitric oxide (NO), produced by inducible NO synthase (iNOS), is a key molecule in blocking the development of S. japonicum in rats. To further explore the mechanism of NO inhibiting S. japonicum development in rats, we performed S-nitrosocysteine proteomics of S. japonicum collected from infected rats and mice. The results suggested that S. japonicum in rats may have undergone endoplasmic reticulum (ER) stress. Interestingly, we found that the ER of S. japonicum in rats showed marked damage, while the ER of the worm in iNOS-/- rats and mice were relatively normal. Moreover, the expression of ER stress markers in S. japonicum from WT rats was significantly increased, compared with S. japonicum from iNOS-/- rats and mice. Using the NO donor sodium nitroprusside in vitro, we demonstrated that NO could induce ER stress in S. japonicum in a dose-dependent manner, and the NO-induced ER stress in S. japonicum could be inhibited by ER stress inhibitor 4-Phenyl butyric acid. We further verified that inhibiting ER stress of S. japonicum in rats promoted parasite development and survival. Furthermore, we demonstrated that NO-induced ER stress of S. japonicum was related to the efflux of Ca2+ from ER and the impairment of mitochondrial function. Collectively, these findings show that high levels of NO in rats could induce ER stress in S. japonicum by promoting the efflux of Ca2+ from ER and damaging the mitochondrial function, which block the worm development. Thus, this study further clarifies the mechanism of anti-schistosome in rats and provides potential strategies for drug development against schistosomiasis and other parasitosis.
Collapse
Affiliation(s)
- Mei Peng
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, China; Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - Siyu Zhao
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, China
| | - Yunyi Hu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, China
| | - Lichao Zhang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, China
| | - Tao Zhou
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, China
| | - Mingrou Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, China
| | - Meiyining Xu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, China
| | - Kefeng Jiang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, China
| | - Yun Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, China
| | - Dinghao Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, China
| | - Zhao-Rong Lun
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, China
| | - Jia Shen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Akinyemi AO, Simpson KE, Oyelere SF, Nur M, Ngule CM, Owoyemi BCD, Ayarick VA, Oyelami FF, Obaleye O, Esoe DP, Liu X, Li Z. Unveiling the dark side of glucose-regulated protein 78 (GRP78) in cancers and other human pathology: a systematic review. Mol Med 2023; 29:112. [PMID: 37605113 PMCID: PMC10464436 DOI: 10.1186/s10020-023-00706-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023] Open
Abstract
Glucose-Regulated Protein 78 (GRP78) is a chaperone protein that is predominantly expressed in the lumen of the endoplasmic reticulum. GRP78 plays a crucial role in protein folding by assisting in the assembly of misfolded proteins. Under cellular stress conditions, GRP78 can translocate to the cell surface (csGRP78) were it interacts with different ligands to initiate various intracellular pathways. The expression of csGRP78 has been associated with tumor initiation and progression of multiple cancer types. This review provides a comprehensive analysis of the existing evidence on the roles of GRP78 in various types of cancer and other human pathology. Additionally, the review discusses the current understanding of the mechanisms underlying GRP78's involvement in tumorigenesis and cancer advancement. Furthermore, we highlight recent innovative approaches employed in downregulating GRP78 expression in cancers as a potential therapeutic target.
Collapse
Affiliation(s)
| | | | | | - Maria Nur
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA
| | | | | | | | - Felix Femi Oyelami
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA
| | | | - Dave-Preston Esoe
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, USA
| | - Zhiguo Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA.
| |
Collapse
|
3
|
Dos Santos NS, Gonçalves DR, Balbinot B, Visioli F. Is GRP78 (Glucose-regulated protein 78) a prognostic biomarker in differents types of cancer? A systematic review and meta-analysis. Pathol Res Pract 2023; 242:154301. [PMID: 36610326 DOI: 10.1016/j.prp.2023.154301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
GRP78 is a chaperone with anti-apoptotic function associated with aggressive tumors. This systematic review aimed to evaluate GRP78 expression in cancer and its relation to prognosis outcomes. This review was conducted in different databases searching for human cancer studies assessing GRP78 immunohistochemical levels on tissue samples. A total of 98 manuscripts were included. In 62% of the studies, GRP78 was associated with a worse prognosis. A meta-analysis included 29 studies that detected a significantly higher expression of GRP78 in cancer tissues (RR= 2.35, 95% CI 1.75-3.15) compared to control. A meta-analysis of 3 and 5-years Overall Survival revealed an increased risk of death for tumors with high expression of GRP78 (RR=1.36, 95%CI 1.16-1,59, I2 = 57%) and (RR=1.65, 95%CI 1.22-2.21, I2 =64%), respectively. GRP78 is an important prognostic biomarker for different types of cancer and a promising therapeutic target.
Collapse
Affiliation(s)
- Natália Souza Dos Santos
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Brazil
| | - Douglas Rodrigues Gonçalves
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Brazil; Oral Medicine Unit, Otorhinolaryngology Service, Hospital de Clínicas de Porto Alegre, Brazil
| | - Bianca Balbinot
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Brazil
| | - Fernanda Visioli
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Brazil; Experimental Center Research, Hospital de Clínicas de Porto Alegre, Brazil.
| |
Collapse
|
4
|
Yamamoto V, Wang B, Lee AS. Suppression of head and neck cancer cell survival and cisplatin resistance by GRP78 small molecule inhibitor YUM70. Front Oncol 2023; 12:1044699. [PMID: 36713577 PMCID: PMC9875086 DOI: 10.3389/fonc.2022.1044699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is one of the leading causes of cancer-related death worldwide. Surgical resection, radiation and chemotherapy are the mainstay of HNSCC treatment but are often unsatisfactory. Cisplatin is a commonly used chemotherapy in HNSCC; however, cisplatin resistance is a major cause of relapse and death. The 78-kD glucose-regulated protein (GRP78) is the master regulator of the unfolded protein response (UPR) and is implicated in therapeutic resistance in cancer. The role of GRP78 in cisplatin resistance in HNSCC remains unclear. YUM70 is a newly discovered hydroxyquinoline analogue and found to be an inhibitor of GRP78. The effect of YUM70 in HNSCC cell lines is unknown. Method Knockdown of GRP78 by siRNAs was performed to investigate the effect of GRP78 reduction in endoplasmic reticulum (ER)-stress induced and general apoptosis. Western blots examining apoptotic markers were performed on three HPV-negative HNSCC cell lines. WST-1 assay was performed to determine cell viability. In reverse, we utilized AA147, an ER proteostasis regulator to upregulate GRP78, and apoptotic markers and cell viability were determined. To test the ability of YUM70 to reverse cisplatin resistance, cisplatin-resistant HNSCC cell lines were generated by prolonged, repeated exposure to increasing concentrations of cisplatin. Colony formation assay using the cisplatin-resistant HNSCC cell line was performed to assess the in vitro reproductive cell survival. Furthermore, to test the ability of YUM70 to reverse cisplatin resistance in a physiologically relevant system, we subjected the 3D spheroids of the cisplatin-resistant HNSCC cell line to cisplatin treatment with or without YUM70 and monitored the onset of apoptosis. Results Reduction of GRP78 level induced HNSCC cell death while GRP78 upregulation conferred higher resistance to cisplatin. Combined cisplatin and YUM70 treatment increased apoptotic markers in the cisplatin-resistant HNSCC cell line, associating with reduced cell viability and clonogenicity. The combination treatment also increased apoptotic markers in the 3D spheroid model. Conclusion The GRP78 inhibitor YUM70 reduced HNSCC cell viability and re-sensitized cisplatin-resistant HNSCC cell line in both 2D and 3D spheroid models, suggesting the potential use of YUM70 in the treatment of HNSCC, including cisplatin-resistant HNSCC.
Collapse
Affiliation(s)
- Vicky Yamamoto
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, United States,USC Norris Comprehensive Cancer Center, Los Angeles, CA, United States
| | - Bintao Wang
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, United States
| | - Amy S. Lee
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, United States,USC Norris Comprehensive Cancer Center, Los Angeles, CA, United States,*Correspondence: Amy S. Lee,
| |
Collapse
|
5
|
Cao Y, He W, Li X, Huang J, Wang J. Rosiglitazone Protects against Acetaminophen-Induced Acute Liver Injury by Inhibiting Multiple Endoplasmic Reticulum Stress Pathways. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6098592. [PMID: 36588533 PMCID: PMC9797312 DOI: 10.1155/2022/6098592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/10/2022] [Accepted: 11/02/2022] [Indexed: 12/24/2022]
Abstract
Background Excessive acetaminophen (APAP) use can lead to acute liver injury (ALI) by inducing endoplasmic reticulum stress (ERS). We previously found that pretreatment with the peroxisome proliferator-activated receptor-γ (PPAR-γ) ligand rosiglitazone (RSG) alleviated ALI in APAP-treated mice. Objective To examine if RSG-mediated hepatoprotection is associated with ERS suppression. Methods Forty-eight male CD-1 mice were randomly divided into control, RSG, APAP 4 h, APAP 24 h, RSG + APAP 4 h, and RSG + APAP 24 h groups. The RSG and RSG + APAP groups received RSG (20 mg/kg) by gavage 48, 24, and 1 h before intraperitoneal injection of 300 mg/kg APAP, while the APAP group received APAP alone and the control group received only normal saline. Animals were sacrificed immediately (RSG and control groups), 4 h (APAP 4 h and RSG + APAP 4 h), or 24 h (APAP 24 h and RSG + APAP 24 h) post-APAP injection. Liver tissues were collected for hematoxylin-eosin staining, TUNEL staining, and Western blotting for ERS-associated proteins. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were also measured. A second cohort received APAP or RSG + APAP as described and were monitored for survival over one week. Results At 4 and 24 h following APAP injection alone, serum ALT and AST levels were significantly elevated, and central lobular necrosis of the liver was observed. Necrosis area reached 21.7% at 4 h and 32.1% at 24 h post-APAP, while apoptotic fractions reached 25.6% and 32.4%. Further, 50% of mice in the survival analysis cohort died within one week post-APAP. At 4 h post-APAP, the ERS marker glucose-regulated protein-78 (GRP78) and ERS-associated proteins pJNK, GRP78, p-eIF2α, pPERK, and pIRE were all significantly upregulated. Pretreatment with RSG significantly reduced serum ALT and AST, liver necrosis area, apoptosis rate, and expression of ERS-associated proteins compared to APAP alone, while increasing survival to 80%. Conclusions Rosiglitazone pretreatment can alleviate APAP-induced ALI by suppressing three branches of ERS signaling.
Collapse
Affiliation(s)
- Yuping Cao
- College of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Wei He
- Anhui No.2 Provincial People's Hospital, Hefei 230041, China
| | - Xiaoping Li
- Anhui No.2 Provincial People's Hospital, Hefei 230041, China
| | - Jiahui Huang
- Anhui No.2 Provincial People's Hospital, Hefei 230041, China
| | - Junxian Wang
- Anhui No.2 Provincial People's Hospital, Hefei 230041, China
| |
Collapse
|
6
|
Down-regulating GRP78 reverses pirarubicin resistance of triple negative breast cancer by miR-495-3p mimics and involves the p-AKT/mTOR pathway. Biosci Rep 2021; 42:230551. [PMID: 34935899 PMCID: PMC8738866 DOI: 10.1042/bsr20210245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 11/23/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022] Open
Abstract
Due to the lack of known therapeutic targets for triple-negative breast cancer (TNBC), chemotherapy is the only available pharmacological treatment. Pirarubicin (tetrahydropyranyl Adriamycin, THP) is the most commonly used anthracycline chemotherapy agent. However, TNBC has a high recurrence rate after chemotherapy, and the mechanisms of chemoresistance and recurrence are not entirely understood. To study the chemoresistance mechanisms, we first screened compounds on a pirarubicin-resistant cell line (MDA-MB-231R) derived from MDA-MB-231. The drug resistance index of MDA-MB-231R cells was approximately five times higher than that of MDA-MB-231 cells. MDA-MB-231R cells have higher GRP78 and lower miR-495-3p expression levels than MDA-MB-231 cells. Transfecting MDA-MB-231R cells with a siGRP78 plasmid reduced GRP78 expression, which restored pirarubicin sensitivity. Besides, transfecting MDA-MB-231R cells with miR-495-3p mimics increased miR-495-3p expression, which also reversed pirarubicin chemoresistance. Cell counting kit-8 (CCK-8), EdU, wound healing, and Transwell assays showed that the miR-495-3p mimics also inhibited cell proliferation and migration. Based on our results, miR-495-3p mimics could down-regulate GRP78 expression via the p-AKT/mTOR signaling pathway in TNBC cells. Remarkably, chemo-resistant and chemo-sensitive TNBC tissues had opposite trends in GRP78 and miR-495-3p expressions. The lower the GRP78 and the higher the miR-495-3p expression, the better prognosis in TNBC patients. Therefore, the mechanism of pirarubicin resistance might involve the miR-495-3p/GRP78/Akt axis, which would provide a possible strategy for treating TNBC.
Collapse
|
7
|
Anthocyanins from Hibiscus syriacus L. Inhibit NLRP3 Inflammasome in BV2 Microglia Cells by Alleviating NF- κB- and ER Stress-Induced Ca 2+ Accumulation and Mitochondrial ROS Production. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1246491. [PMID: 33613822 PMCID: PMC7878077 DOI: 10.1155/2021/1246491] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 02/08/2023]
Abstract
Anthocyanins from the petals of Hibiscus syriacus L. (PS) possess anti-inflammatory, antioxidant, and antimelanogenic activities. However, it remains unclear whether PS inhibit the NLR family pyrin domain-containing 3 (NLRP3) inflammasome activation and assembly. This study is aimed at investigating whether PS downregulate NLRP3-mediated inflammasome by inhibiting nuclear factor-κB (NF-κB) and endoplasmic reticulum (ER) stress. BV2 microglia cells were treated with PS in the presence of lipopolysaccharide and adenosine triphosphate (LPS/ATP), and the NLRP3-related signaling pathway was investigated. In this study, we found that LPS/ATP treatment activated the NLRP3 inflammasome, which resulted in the release of interleukin-1β (IL-1β) and IL-18. Meanwhile, PS reduced LPS/ATP-mediated NLRP3 inflammasome at 12 h by inhibiting ER stress-mediated Ca2+ accumulation and subsequent mitochondrial reactive oxygen species (mtROS) production, which, in turn, decreased IL-1β and IL-18 release. Furthermore, PS inhibited the NLRP3 inflammasome 1 h after LPS/ATP treatment by suppressing the NF-κB pathway, which downregulated Ca2+ accumulation and mtROS production. These data showed that PS negatively regulated activation of the NLRP3 inflammasome in a time-different manner by inhibiting the NF-κB signaling pathway in the early stage and the ER stress response in the late stage. The pathways shared Ca2+ accumulation-mediated mtROS production, which was significantly inhibited in the presence of PS. In conclusion, our results suggested that PS has potential as a supplement against NLRP3 inflammasome-related inflammatory disorders; nevertheless, further studies are needed to determine the effect of PS in the noncanonical NLRP3 inflammasome pathways and pathological conditions in vivo.
Collapse
|
8
|
Aryal YP, Lee ES, Kim TY, Sung S, Kim JY, An SY, Jung JK, Ha JH, Suh JY, Yamamoto H, Sohn WJ, Cho SW, Lee Y, An CH, Kim JY. Stage-specific expression patterns of ER stress-related molecules in mice molars: Implications for tooth development. Gene Expr Patterns 2020; 37:119130. [PMID: 32758541 DOI: 10.1016/j.gep.2020.119130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 01/13/2023]
Abstract
The endoplasmic reticulum (ER) is a site where protein folding and posttranslational modifications occur, but when unfolded or misfolded proteins accumulate in the ER lumen, an unfolded protein response (UPR) occurs. A UPR activates ER-stress signalling genes, including inositol-requiring enzyme-1 (Ire1), activating transcription factor 6 (Atf6), and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (Perk), to maintain homeostasis. The involvement of ER stress molecules in metabolic disease and hard tissue matrix formation has been established; however, an understanding of the role of ER-stress signalling molecules in tooth development is lacking. The aims of this study are to define the stage-specific expression patterns of ER stress-related molecules and to elucidate their putative functions in the organogenesis of teeth. This study leverages knowledge of the tissue morphology and expression patterns of a range of signalling molecules during tooth development. RT-qPCR, in situ hybridization, and immunohistochemistry analyses were performed to determine the stage-specific expression patterns of ER-stress-related signalling molecules at important stages of tooth development. RT-qPCR analyses showed that Atf6 and Perk have similar expression levels during all stages of tooth development; however, the expression levels of Ire1 and its downstream target X-box binding protein (Xbp1) increased significantly from the cap to the secretory stage of tooth development. In situ hybridization results revealed that Atf6 and Xbp1 were expressed in cells that form the enamel knot at cap stage and ameloblasts and odontoblasts at secretory stage in stage-specific patterns. In addition, Atf6, Ire1, and Xbp1 expression exhibited distinct localization patterns in secretory odontoblasts and ameloblasts of PN0 molars. Overall, our results strongly suggest that ER-stress molecules are involved in tooth development in response to protein overload that occurs during signaling modulations from enamel knots at cap stage and extracellular matrix secretion at secretory stage.
Collapse
Affiliation(s)
- Yam Prasad Aryal
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, South Korea
| | - Eui-Seon Lee
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, South Korea
| | - Tae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, South Korea
| | - Shijin Sung
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, South Korea
| | - Ji-Youn Kim
- Department of Dental Hygiene, Gachon University, Incheon, South Korea
| | - Seo-Young An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, South Korea
| | - Jae-Kwang Jung
- Department of Oral Medicine, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, South Korea
| | - Jung-Hong Ha
- Department of Conservative Dentistry, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, South Korea
| | - Jo-Young Suh
- Department of Periodontology, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, South Korea
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo, Japan
| | - Wern-Joo Sohn
- Pre-Major of Cosmetics and Pharmaceutics, Daegu Haany University, Gyeongsan, South Korea
| | - Sung-Won Cho
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, South Korea
| | - Chang-Hyeon An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, South Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu, 41940, South Korea.
| |
Collapse
|
9
|
Li Y, Wu J, Zhang X, Liu W, Shi L, Xu F, Wang J, Xiong Y. Octreotide remits endoplasmic reticulum stress to reduce autophagy of intestinal epithelial cell line Caco-2 via upregulation of miR-101. Life Sci 2019; 231:116551. [PMID: 31185236 DOI: 10.1016/j.lfs.2019.116551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 12/25/2022]
Abstract
Octreotide (OCT) shows clinical efficacies in the treatment of liver cirrhosis complicated with gastrointestinal hemorrhage. Experiments were designed to investigate its function mechanism associated with endoplasmic reticulum stress (ERS)-induced autophagy and microRNA (miR). Protein associated with ERS and autophagy was detected by western blot. miR-101 was examined by qRT-PCR. Besides, miR-101 or G protein-coupled receptor 78 (GPR78)-silenced Caco-2 cells were established by transfection. Furthermore, western blot was used to determine TGF-beta activated kinase 1 (TAK1), AMPK, mTOR, p70S6K as well as their phosphorylated forms. Lipopolysaccharide (LPS) enforced the expression of GPR78. Besides, LPS triggered the production of Beclin-1 and LC3-II while mitigated the accumulation of p62. Then all these above results were reversed by OCT pretreatment. Moreover, miR-101 expression was downregulated by LPS while upregulated by OCT. Further, miR-101 knockdown strengthened ERS and promoted autophagy. GPR78 silence retarded autophagy process. In the end, OCT mitigated phosphorylation of TAK1, AMPK while enhanced the phosphorylated expression of mTOR and p70S6K in LPS-treated Caco-2 cells. The anti-autophagy property of OCT was mediated by miR-101-induced suppression of GPR78 in LPS-treated Caco-2 cells.
Collapse
Affiliation(s)
- Yuling Li
- Department of Pathophysiology, Binzhou Medical University, Yantai 264003, Shandong, China.
| | - Jingxue Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, Liaoning, China
| | - Xinsheng Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, Liaoning, China
| | - Wei Liu
- Department of Pathophysiology, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Lei Shi
- Department of Pathophysiology, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Fang Xu
- Department of Pathophysiology, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Jiao Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, Liaoning, China
| | - Yanlian Xiong
- Department of Anatomy, Binzhou Medical University, Yantai 264003, Shandong, China
| |
Collapse
|
10
|
Pluquet O, Galmiche A. Impact and Relevance of the Unfolded Protein Response in HNSCC. Int J Mol Sci 2019; 20:ijms20112654. [PMID: 31151143 PMCID: PMC6601021 DOI: 10.3390/ijms20112654] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) encompass a heterogeneous group of solid tumors that arise from the upper aerodigestive tract. The tumor cells face multiple challenges including an acute demand of protein synthesis often driven by oncogene activation, limited nutrient and oxygen supply and exposure to chemo/radiotherapy, which forces them to develop adaptive mechanisms such as the Unfolded Protein Response (UPR). It is now well documented that the UPR, a homeostatic mechanism, is induced at different stages of cancer progression in response to intrinsic (oncogenic activation) or extrinsic (microenvironment) perturbations. This review will discuss the role of the UPR in HNSCC as well as in the key processes that characterize the physiology of HNSCC. The role of the UPR in the clinical context of HNSCC will also be addressed.
Collapse
Affiliation(s)
- Olivier Pluquet
- Institut Pasteur de Lille, Université de Lille, CNRS, UMR8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, F-59000 Lille, France.
| | - Antoine Galmiche
- Service de Biochimie, Centre de Biologie Humaine (CBH), CHU Sud, 80054 Amiens, France.
- EA7516, Université de Picardie Jules Verne (UPJV), 80054 Amiens, France.
| |
Collapse
|
11
|
Lee CW, Chi MC, Chang TM, Liu JF. Artocarpin induces cell apoptosis in human osteosarcoma cells through endoplasmic reticulum stress and reactive oxygen species. J Cell Physiol 2018; 234:13157-13168. [PMID: 30549031 DOI: 10.1002/jcp.27986] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022]
Abstract
Osteosarcoma is a malignant primary bone tumor that responds poorly to both chemotherapy and radiation therapy. However, because of side effects and drug resistance in chemotherapy and the insufficiency of an effective adjuvant therapy for osteosarcoma, it is necessary to research novel treatments. This study was the first to investigate the anticancer effects of the flavonoid derivative artocarpin in osteosarcoma. Artocarpin induced cell apoptosis in three human osteosarcoma cell lines-U2OS, MG63, and HOS. Artocarpin was also associated with increased intracellular reactive oxygen species (ROS). Mitochondrial dysfunction was followed by the release of cytochrome c from mitochondria and accompanied by decreased antiapoptotic Bcl-2 and Bcl-xL and increased proapoptotic protein Bak and Bax. Artocarpin triggered endoplasmic reticulum (ER) stress, as indicated by changes in cytosol calcium levels and increased glucose-regulated protein 78 and 94 expressions, and also increased calpains expression and activity. Animal studies revealed a dramatic 40% reduction in tumor volume after 18 days of treatment. This study demonstrated a novel anticancer activity of artocarpin against human osteosarcoma cells and in murine tumor models. In summary, artocarpin significantly induced cell apoptosis through ROS, ER stress, mitochondria, and the caspase pathway, and may thus be a novel anticancer treatment for osteosarcoma.
Collapse
Affiliation(s)
- Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi, Taiwan, Republic of China.,Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan, Republic of China.,Department of Rehabilitation, Chang Gung Memorial Hospital, Chia-Yi, Taiwan, Republic of China
| | - Miao-Ching Chi
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi County, Taiwan, Republic of China.,Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi County, Taiwan, Republic of China.,Division of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Taiwan, Republic of China
| | - Tsung-Ming Chang
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Ju-Fang Liu
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, Republic of China.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, Republic of China
| |
Collapse
|
12
|
Choudhary I, Lee H, Pyo MJ, Heo Y, Chae J, Yum SS, Kang C, Kim E. Proteomic Investigation to Identify Anticancer Targets of Nemopilema nomurai Jellyfish Venom in Human Hepatocarcinoma HepG2 Cells. Toxins (Basel) 2018; 10:E194. [PMID: 29748501 PMCID: PMC5983250 DOI: 10.3390/toxins10050194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 12/30/2022] Open
Abstract
Nemopilema nomurai is a giant jellyfish that blooms in East Asian seas. Recently, N. nomurai venom (NnV) was characterized from a toxicological and pharmacological point of view. A mild dose of NnV inhibits the growth of various kinds of cancer cells, mainly hepatic cancer cells. The present study aims to identify the potential therapeutic targets and mechanism of NnV in the growth inhibition of cancer cells. Human hepatocellular carcinoma (HepG2) cells were treated with NnV, and its proteome was analyzed using two-dimensional gel electrophoresis, followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI/TOF/MS). The quantity of twenty four proteins in NnV-treated HepG2 cells varied compared to non-treated control cells. Among them, the amounts of fourteen proteins decreased and ten proteins showed elevated levels. We also found that the amounts of several cancer biomarkers and oncoproteins, which usually increase in various types of cancer cells, decreased after NnV treatment. The representative proteins included proliferating cell nuclear antigen (PCNA), glucose-regulated protein 78 (GRP78), glucose-6-phosphate dehydrogenase (G6PD), elongation factor 1γ (EF1γ), nucleolar and spindle-associated protein (NuSAP), and activator of 90 kDa heat shock protein ATPase homolog 1 (AHSA1). Western blotting also confirmed altered levels of PCNA, GRP78, and G6PD in NnV-treated HepG2 cells. In summary, the proteomic approach explains the mode of action of NnV as an anticancer agent. Further characterization of NnV may help to unveil novel therapeutic agents in cancer treatment.
Collapse
Affiliation(s)
- Indu Choudhary
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.
| | - Hyunkyoung Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.
| | - Min Jung Pyo
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.
| | - Yunwi Heo
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.
| | - Jinho Chae
- Marine Environmental Research and Information Laboratory, Gunpo 15850, Korea.
| | - Seung Shic Yum
- South Sea Environmental Research Center, Korea Institute of Ocean Science and Technology (KIOST), Geoje 53201, Korea.
- Faculty of Marine Environmental Science, University of Science and technology (UST), Geoje 53201, Korea.
| | - Changkeun Kang
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.
- Institutes of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea.
| | - Euikyung Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.
- Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
13
|
Fucikova J, Kasikova L, Truxova I, Laco J, Skapa P, Ryska A, Spisek R. Relevance of the chaperone-like protein calreticulin for the biological behavior and clinical outcome of cancer. Immunol Lett 2017; 193:25-34. [PMID: 29175313 DOI: 10.1016/j.imlet.2017.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/17/2017] [Accepted: 11/19/2017] [Indexed: 12/26/2022]
Abstract
The death of cancer cells can be categorized as either immunogenic (ICD) or nonimmunogenic, depending on the initiating stimulus. The immunogenic processes of immunogenic cell death are mainly mediated by damage-associated molecular patterns (DAMPs), which include surface exposure of calreticulin (CRT), secretion of adenosine triphosphate (ATP), release of non-histone chromatin protein high-mobility group box 1 (HMGB1) and the production of type I interferons (IFNs). DAMPs are recognized by various receptors that are expressed by antigen-presenting cells (APCs) and potentiate the presentation of tumor antigens to T lymphocytes. Accumulating evidence indicates that CRT exposure constitutes one of the major checkpoints, that determines the immunogenicity of cell death both in vitro and in vivo in mouse models. Moreover, recent studies have identified CRT expression on tumor cells not only as a marker of ICD and active anti-tumor immune reactions but also as a major predictor of a better prognosis in various cancers. Here, we discuss the recent information on the CRT capacity to activate anticancer immune response as well as its prognostic and predictive role for the clinical outcome in cancer patients.
Collapse
Affiliation(s)
- Jitka Fucikova
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic; Sotio, Prague, Czech Republic
| | - Lenka Kasikova
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic; Sotio, Prague, Czech Republic
| | - Iva Truxova
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic; Sotio, Prague, Czech Republic
| | - Jan Laco
- Fingerland Department of Pathology, Charles University Medical Faculty and University Hospital, Hradec Kralove, Czech Republic
| | - Petr Skapa
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Ales Ryska
- Fingerland Department of Pathology, Charles University Medical Faculty and University Hospital, Hradec Kralove, Czech Republic
| | - Radek Spisek
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic; Sotio, Prague, Czech Republic.
| |
Collapse
|
14
|
Abstract
The efficient production, folding, and secretion of proteins is critical for cancer cell survival. However, cancer cells thrive under stress conditions that damage proteins, so many cancer cells overexpress molecular chaperones that facilitate protein folding and target misfolded proteins for degradation via the ubiquitin-proteasome or autophagy pathway. Stress response pathway induction is also important for cancer cell survival. Indeed, validated targets for anti-cancer treatments include molecular chaperones, components of the unfolded protein response, the ubiquitin-proteasome system, and autophagy. We will focus on links between breast cancer and these processes, as well as the development of drug resistance, relapse, and treatment.
Collapse
Affiliation(s)
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, A320 Langley Hall, 4249 Fifth Ave, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
15
|
Abstract
Cervical cancer is among the most common cancers inflicting women worldwide. Understanding the pathological mechanisms of cervical cancer development is critical for identifying novel targets for cervical cancer treatment. MicroRNAs (miRs) have various roles in regulating cancer development. In this study, we investigated the potential role of miR-181a and its target in regulating cervical cancer development and chemotherapy resistance. The expression of miR-181a was evaluated and modulated in several human cervical cancer cell lines. The role of miR-181a in regulating cervical cancer growth and chemotherapy sensitivity was investigated in cell culture models and mouse tumor xenograft models. The target of miR-181a and its function were identified in cervical cancer models. We found a distinct expression profile for miR-181a in cervical cancer cell lines. Low expression of miR-181a was closely related to cervical cancer growth and oxaliplatin resistance. HSPA5/GRP78 was identified as a target of miR-181a in cervical cancer cells. Upregulation of GRP78 led to a high cell proliferation rate and oxaliplatin resistance in cervical cancer models. In a retrospective cervical cancer cohort, high GRP78 expression was correlated with poor survival. miR-181a suppressed cervical cancer development via downregulating GRP78. High expression of GRP78 is a tumor-promoting factor in cervical cancer and is thus a potential target for novel treatment.
Collapse
Affiliation(s)
- Chengyan Luo
- Department of Gynecology, Jiangsu Province Hospital, The First Affiliated Hospital, Nanjing Medical University, Nanjing, P.R. China
| | - Jiangnan Qiu
- Department of Gynecology, Jiangsu Province Hospital, The First Affiliated Hospital, Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
16
|
Zheng HC, Gong BC, Zhao S. The meta and bioinformatics analysis of GRP78 expression in gastric cancer. Oncotarget 2017; 8:73017-73028. [PMID: 29069845 PMCID: PMC5641188 DOI: 10.18632/oncotarget.20318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/04/2017] [Indexed: 01/16/2023] Open
Abstract
GRP78 is a molecular chaperone located in endoplasmic reticulum, and induces folding and assembly of newly-synthesized proteins, proteasome degradation of aberrant proteins, and translocation of secretory proteins, autophagy, and epithelial-mesenchymal transition. We performed a systematic meta- and bioinformatics analysis through multiple online databases up to March 14, 2017. It was found that up-regulated GRP78 expression in gastric cancer, compared with normal mucosa at both protein and mRNA levels (p < 0.05). GRP78 expression was positively correlated with depth of invasion, TNM staging and dedifferentiation of gastric cancer (p < 0.05), while its mRNA expression was negatively correlated with depth of invasion, histological grading and dedifferentiation (p < 0.05). A positive association between GRP78 expression and unfavorable overall survival was found in patients with gastric cancer (p < 0.005). A higher GRP78 mRNA expression was positively correlated with overall and progression-free survival rates of all cancer patients, even stratified by aggressive parameters, or as an independent factor (p < 0.05). These findings indicated that GRP78 expression might be employed as a potential marker to indicate gastric carcinogenesis and subsequent progression, even prognosis.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Bao-Cheng Gong
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Shuang Zhao
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
17
|
Xiao Y, Ma D, Wang H, Wu D, Chen Y, Ji K, Qin T, Wu L. Matrine Suppresses the ER-positive MCF Cells by Regulating Energy Metabolism and Endoplasmic Reticulum Stress Signaling Pathway. Phytother Res 2017; 31:671-679. [PMID: 28185329 DOI: 10.1002/ptr.5785] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 12/25/2022]
Abstract
Matrine (C15 H24 N2 O), an alkaloid that is one of the main active components from Sophora flavescens. Matrine has been demonstrated to have therapeutic effects on various solid tumors, including breast cancer, but the mechanism still needs further study. Endoplasmic reticulum (ER)-positive Michigan Cancer Foundation cells were cultured, and matrine was added in various amounts to measure the dose-dependent and time-dependent cytotoxicity. Hoechst 33258 staining was used to observed nuclear morphological changes. Apoptosis was measured by AnnexinV/PI double staining assay kit. Intracellular adenosine triphosphate and glycometabolism were detected by assay kit. The protein levels GRP78, p-eIF2α, CHOP, cytochrome c, and HexokinaseII were analyzed. Mechanistic investigations revealed that matrine treatment causes ER dilation and up-regulated the expression of ER stress markers GRP78, eIF2α, and CHOP, increases the levels of apoptotic in Michigan Cancer Foundation cells, subsequently, blocking the ER stress-mediated apoptosis pathway, significantly decreased matrine-induced apoptotic but still has significant difference between control group. In addition, matrine not only promoted the occurrence of ER stress but also inhibited the expression of hexokinase II, down-regulated energy metabolism. In summary, the present study suggests that the induction of ER stress-mediated apoptosis by matrine and down-regulated energy metabolism may account for its cytotoxic effects in human breast cancer cells. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yi Xiao
- Department of Galactophore, The First Hospital of Lanzhou University, Lanzhou, China
| | - Dachang Ma
- Department of Galactophore, The First Hospital of Lanzhou University, Lanzhou, China
| | - Honglei Wang
- Department of Galactophore, The First Hospital of Lanzhou University, Lanzhou, China
| | - Duoming Wu
- Department of Galactophore, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ying Chen
- Department of Galactophore, The First Hospital of Lanzhou University, Lanzhou, China
| | - Kun Ji
- Department of Galactophore, The First Hospital of Lanzhou University, Lanzhou, China
| | - Tao Qin
- Department of General Surgery, Pingliang City People's Hospital, PingLiang, China
| | - Li Wu
- Department of Galactophore, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|