1
|
Sung MT, Chen LH, Chiang YW, Jhuang JY, Chang YC, Caleb Chen GS, Lim KH. Deciphering clonal architecture and evolutionary dynamics of secondary acute myeloid leukemia and donor-derived myelodysplastic syndrome using single-cell multi-omics analysis. Am J Hematol 2023; 98:E403-E406. [PMID: 37792553 DOI: 10.1002/ajh.27121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Affiliation(s)
- Meng-Ta Sung
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan
| | - Lo-Ho Chen
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ya-Wen Chiang
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan
| | - Jie-Yang Jhuang
- Department of Pathology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yu-Chen Chang
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan
| | - Gon-Shen Caleb Chen
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan
- Department of Nursing, MacKay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan
- Institute of Molecular Medicine, National Tsing-Hua University, Hsin-Chu, Taiwan
| | - Ken-Hong Lim
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan
| |
Collapse
|
2
|
Novikova SE, Tolstova TV, Soloveva NA, Farafonova TE, Tikhonova OV, Kurbatov LK, Rusanov AL, Zgoda VG. System analysis of surface CD markers during the process of granulocytic differentiation. BIOMEDITSINSKAIA KHIMIIA 2023; 69:383-393. [PMID: 38153053 DOI: 10.18097/pbmc20236906383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Plasma membrane proteins with extracellular-exposed domains are responsible for transduction of extracellular signals into intracellular responses, and their accessibility to therapeutic molecules makes them attractive targets for drug development. In this work, using omics technologies and immunochemical methods, we have studied changes in the content of markers of clusters of differentiation (CD markers) of neutrophils (CD33, CD97, CD54, CD38, CD18, CD11b, CD44, and CD71) at the level of transcripts and proteins in NB4, HL-60 and K562 cell lines, induced by the treatment with all-trans-retinoic acid (ATRA). Transcriptomic analysis revealed the induction of CD38, CD54, CD11b, and CD18 markers as early as 3 h after the addition of the inducer in the ATRA-responsive cell lines HL-60 and NB4. After 24 h, a line-specific expression pattern of CD markers could be observed in all cell lines. Studies of changes in the content of CD antigens by means of flow cytometry and targeted mass spectrometry (MS) gave similar results. The proteomic profile of the surface markers (CD38, CD54, CD11b, and CD18), characteristic of the NB4 and HL-60 lines, reflects different molecular pathways for the implementation of ATRA-induced differentiation of leukemic cells into mature neutrophils.
Collapse
Affiliation(s)
- S E Novikova
- Institute of Biomedical Chemistry, Moscow, Russia
| | - T V Tolstova
- Institute of Biomedical Chemistry, Moscow, Russia
| | - N A Soloveva
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | - L K Kurbatov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A L Rusanov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
3
|
Zhang H, Sun C, Sun Q, Li Y, Zhou C, Sun C. Susceptibility of acute myeloid leukemia cells to ferroptosis and evasion strategies. Front Mol Biosci 2023; 10:1275774. [PMID: 37818101 PMCID: PMC10561097 DOI: 10.3389/fmolb.2023.1275774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/15/2023] [Indexed: 10/12/2023] Open
Abstract
Acute myeloid leukemia (AML) is a highly aggressive hematologic malignancy with a 5-year survival rate of less than 30%. Continuous updating of diagnostic and therapeutic strategies has not been effective in improving the clinical benefit of AML. AML cells are prone to iron metabolism imbalance due to their unique pathological characteristics, and ferroptosis is a novel cell death mode that is dominated by three cellular biological processes: iron metabolism, oxidative stress and lipid metabolism. An in-depth exploration of the unique ferroptosis mechanism in AML can provide new insights for the diagnosis and treatment of this disease. This study summarizes recent studies on ferroptosis in AML cells and suggests that the metabolic characteristics, gene mutation patterns, and dependence on mitochondria of AML cells greatly increase their susceptibility to ferroptosis. In addition, this study suggests that AML cells can establish a variety of strategies to evade ferroptosis to maintain their survival during the process of occurrence and development, and summarizes the related drugs targeting ferroptosis pathway in AML treatment, which provides development directions for the subsequent mechanism research and clinical treatment of AML.
Collapse
Affiliation(s)
- Hanyun Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunjie Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qi Sun
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ye Li
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Chao Zhou
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| |
Collapse
|
4
|
Li J, Zhang W. From iron chelation to overload as a therapeutic strategy to induce ferroptosis in hematologic malignancies. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2022; 27:1163-1170. [PMID: 36222350 DOI: 10.1080/16078454.2022.2132362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Ferroptosis is an iron-dependent, non-apoptotic mode of cell death characterized by excessive accumulation of reactive oxygen species (ROS). It plays an important role in the occurrence, development and treatment of various cancers, but little is known regarding the role of ferroptosis in hematologic malignancies. This review elaborates the regulatory mechanism of ferroptosis and the treatment opportunities for targeting ferroptosis in hematologic malignancies. METHODS A systematic literature review through PubMed was conducted to summarize the published evidence on the therapeutic potential of targeting ferroptosis in hematological malignant tumors. Literature sources published in English were searched, using the terms ferroptosis, leukemia, myelodysplastic syndrome, lymphoma and multiple myeloma. RESULTS More and more small molecules have been found to induce ferroptosis in hematologic malignancies through targeted iron metabolism and lipid peroxidation, and some ferroptosis inducers have been proved to have synergistic effect with other chemotherapeutic drugs. CONCLUSION This paper discusses the significance of ferroptosis in hematologic malignancies and provides a new way for the treatment of hematologic malignancies, and more experimental studies should be conducted in future.
Collapse
Affiliation(s)
- Jiaojiao Li
- Department of Hematology, General Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Wei Zhang
- Department of Hematology, General Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
5
|
Imoto S, Suzukawa M, Takada K, Watanabe S, Igarashi S, Kitani M, Nagase T, Ohta K. Immunoglobulin A promotes IL-6 and IL-8 production, proliferation, and migration by the human bronchial smooth muscle cells. Cell Immunol 2022; 381:104612. [PMID: 36130412 DOI: 10.1016/j.cellimm.2022.104612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/24/2022] [Accepted: 09/11/2022] [Indexed: 11/03/2022]
Abstract
Immunoglobulin A (IgA) is important in biological defense, mainly in the mucosal area, and plays pathogenic roles in various diseases by activating both inflammatory and structural cells. The current study aimed to validate the effects of IgA on the human bronchial smooth muscle cell (BSMC), which plays a major role in airway inflammation and remodeling. Serum IgA induced interleukin (IL)-6 and IL-8 production at both mRNA and protein levels, and enhanced cell proliferation and migration by the BSMCs. The synthetic phenotype markers were regulated and the contractile phenotype markers were downregulated by serum IgA. Mitogen-activated protein kinase, phosphatidylinositol 3-kinase/Akt, and nuclear factor-κB pathways were involved in IgA-induced IL-6 and IL-8 production. The BSMCs expressed transferrin receptor (TfR), and TfR siRNA transfection inhibited IL-6 and IL-8 production by serum IgA. In summary, serum IgA is a potent activator of the BSMCs at least partially via TfR.
Collapse
Affiliation(s)
- Sahoko Imoto
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan; Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Maho Suzukawa
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan.
| | - Kazufumi Takada
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan; Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shizuka Watanabe
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan; Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Sayaka Igarashi
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| | - Masashi Kitani
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ken Ohta
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan; Japan Anti-Tuberculosis Association, JATA Fukujuji Hospital, 3-1-24 Matsuyama, Kiyose-City, Tokyo 204-8522, Japan.
| |
Collapse
|
6
|
Song J, Shang B, Pei Y, Shi M, Niu X, Dou L, Drokow EK, Xu F, Bai Y, Sun K. A higher percentage of leukemic blasts with vacuoles predicts unfavorable outcomes in patients with acute myeloid leukemia. Leuk Res 2021; 109:106638. [PMID: 34116372 DOI: 10.1016/j.leukres.2021.106638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/14/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Cytoplasmic vacuoles, which are a morphological feature of dysplasia, can be observed under a microscope at initial diagnosis. Recently, this typical morphological feature has been found to be associated with impaired survival. To investigate the clinical significance of the grading of blasts with vacuoles in acute myeloid leukemia (AML), we retrospectively studied 152 patients newly diagnosed with non-M3 AML. The patients were categorized into three groups according to the percentage of blasts with vacuoles (>20 %, 11-20 %, 0-10 %). A high percentage of blasts with vacuoles (>20 %) was positively associated with the European Leukemia Net (2017-ELN) high-risk AML, a complex karyotype, TP53 and IDH1/2 mutations, and CD71 expression and negatively associated with the ELN low-risk category. Importantly, patients who had a higher percentage of blasts with vacuoles had a lower complete remission rate in response to first-cycle induction chemotherapy. The overall survival and event-free survival of patients who had a higher percentage of blasts with vacuoles were significantly shorter. Moreover, multivariate analysis showed that blast vacuolization was an independent high prognostic factor for AML. In conclusion, a higher percentage of leukemic blasts with vacuoles predicts worse outcomes in AML and may have potential as a prognostic marker.
Collapse
Affiliation(s)
- Juanjuan Song
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Henan, People's Republic of China
| | - Baojun Shang
- Institute of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Henan, People's Republic of China
| | - Yanru Pei
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Henan, People's Republic of China
| | - Mingyue Shi
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Henan, People's Republic of China
| | - Xiaona Niu
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Henan, People's Republic of China
| | - Liurui Dou
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Henan, People's Republic of China
| | - Emmanuel Kwateng Drokow
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Henan, People's Republic of China
| | - Fangfang Xu
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Henan, People's Republic of China
| | - Yanliang Bai
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Henan, People's Republic of China
| | - Kai Sun
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Henan, People's Republic of China.
| |
Collapse
|
7
|
Weber S, Parmon A, Kurrle N, Schnütgen F, Serve H. The Clinical Significance of Iron Overload and Iron Metabolism in Myelodysplastic Syndrome and Acute Myeloid Leukemia. Front Immunol 2021; 11:627662. [PMID: 33679722 PMCID: PMC7933218 DOI: 10.3389/fimmu.2020.627662] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Myelodysplasticsyndrome (MDS) and acute myeloid leukemia (AML) are clonal hematopoietic stem cell diseases leading to an insufficient formation of functional blood cells. Disease-immanent factors as insufficient erythropoiesis and treatment-related factors as recurrent treatment with red blood cell transfusions frequently lead to systemic iron overload in MDS and AML patients. In addition, alterations of function and expression of proteins associated with iron metabolism are increasingly recognized to be pathogenetic factors and potential vulnerabilities of these diseases. Iron is known to be involved in multiple intracellular and extracellular processes. It is essential for cell metabolism as well as for cell proliferation and closely linked to the formation of reactive oxygen species. Therefore, iron can influence the course of clonal myeloid disorders, the leukemic environment and the occurrence as well as the defense of infections. Imbalances of iron homeostasis may induce cell death of normal but also of malignant cells. New potential treatment strategies utilizing the importance of the iron homeostasis include iron chelation, modulation of proteins involved in iron metabolism, induction of leukemic cell death via ferroptosis and exploitation of iron proteins for the delivery of antileukemic drugs. Here, we provide an overview of some of the latest findings about the function, the prognostic impact and potential treatment strategies of iron in patients with MDS and AML.
Collapse
Affiliation(s)
- Sarah Weber
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anastasia Parmon
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Nina Kurrle
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Frank Schnütgen
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Hubert Serve
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Richard C, Verdier F. Transferrin Receptors in Erythropoiesis. Int J Mol Sci 2020; 21:ijms21249713. [PMID: 33352721 PMCID: PMC7766611 DOI: 10.3390/ijms21249713] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Erythropoiesis is a highly dynamic process giving rise to red blood cells from hematopoietic stem cells present in the bone marrow. Red blood cells transport oxygen to tissues thanks to the hemoglobin comprised of α- and β-globin chains and of iron-containing hemes. Erythropoiesis is the most iron-consuming process to support hemoglobin production. Iron delivery is mediated via transferrin internalization by the endocytosis of transferrin receptor type 1 (TFR1), one of the most abundant membrane proteins of erythroblasts. A second transferrin receptor—TFR2—associates with the erythropoietin receptor and has been implicated in the regulation of erythropoiesis. In erythroblasts, both transferrin receptors adopt peculiarities such as an erythroid-specific regulation of TFR1 and a trafficking pathway reliant on TFR2 for iron. This review reports both trafficking and signaling functions of these receptors and reassesses the debated role of TFR2 in erythropoiesis in the light of recent findings. Potential therapeutic uses targeting the transferrin-TFR1 axis or TFR2 in hematological disorders are also discussed.
Collapse
Affiliation(s)
- Cyrielle Richard
- Inserm U1016, CNRS UMR8104, Institut Cochin, Université de Paris, 75014 Paris, France;
- Laboratoire d’excellence GR-Ex, Université de Paris, 75014 Paris, France
| | - Frédérique Verdier
- Inserm U1016, CNRS UMR8104, Institut Cochin, Université de Paris, 75014 Paris, France;
- Laboratoire d’excellence GR-Ex, Université de Paris, 75014 Paris, France
- Correspondence:
| |
Collapse
|
9
|
Dong X, Zhang D, Zhang J, Chen X, Zhang Y, Zhang Y, Zhou X, Chen T, Zhou H. Immune prognostic risk score model in acute myeloid leukemia with normal karyotype. Oncol Lett 2020; 20:380. [PMID: 33154778 DOI: 10.3892/ol.2020.12243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/08/2020] [Indexed: 01/14/2023] Open
Abstract
Acute myeloid leukemia with normal karyotype (NK-AML) is a group of diseases with high heterogeneity and immunological processes are significantly associated with its initiation and development. The implication of the immunogenomic landscape in the prognosis of patients with NK-AML has remained largely elusive. In the present study, the expression profiles of immune-related genes (IRGs) were examined and their association with overall survival (OS) was determined in 60 patients with NK-AML from The Cancer Genome Atlas dataset and 104 patients from the Gene Expression Omnibus (GEO) dataset no. GSE71014. Univariate Cox regression analysis was used to identify 42 and 203 IRGs in the two respective cohorts, which were significantly associated with OS in NK-AML. A risk model was constructed based on the regression coefficient and expression values of nine survival-associated IRGs shared between the two datasets [zinc finger CCCH-type containing, antiviral 1 like; transferrin receptor; suppressor of cytokine signaling 1; ELAV like RNA binding protein 1; roundabout guidance receptor 3; unc-93 homolog B1, Toll-like receptor signaling regulator; protein tyrosine phosphatase non-receptor type 6; interleukin 2 receptor subunit alpha (IL2RA) and IL3RA]. Using this risk model, patients with NK-AML may be divided into high- and low-risk groups in prognostic predictions. The area under the receiver operating characteristic curve for predicting OS was 0.793. The prognostic role of this risk model was successfully verified in another independent cohort (GEO dataset no. GSE71014). The prognostic risk score was positively associated with age and fms related receptor tyrosine kinase 3 mutation and correlated with infiltration by T regulatory cells. In conclusion, the results of the present study provided an IRG score model for prognostic stratification of adult patients with NK-AML, as well as further insight into the implication of IRGs in NK-AML that may lead to the development of novel immunotherapy approaches for this disease.
Collapse
Affiliation(s)
- Xiaomin Dong
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| | - Danyang Zhang
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| | - Juan Zhang
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| | - Xiaolei Chen
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| | - Yue Zhang
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| | - Yong Zhang
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| | - Xiaohuan Zhou
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| | - Tingting Chen
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| | - Hebing Zhou
- Department of Hematology, The Affiliated Beijing Luhe Hospital of Capital Medical University, Beijing 101149, P.R. China
| |
Collapse
|
10
|
Grignano E, Birsen R, Chapuis N, Bouscary D. From Iron Chelation to Overload as a Therapeutic Strategy to Induce Ferroptosis in Leukemic Cells. Front Oncol 2020; 10:586530. [PMID: 33042852 PMCID: PMC7530268 DOI: 10.3389/fonc.2020.586530] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
Despite its crucial importance in numerous physiological processes, iron also causes oxidative stress and damage which can promote the growth and proliferation of leukemic cells. Iron metabolism is strictly regulated and the related therapeutic approaches to date have been to restrict iron availability to tumor cells. However, since a new form of iron-catalyzed cell death has been described, termed ferroptosis, and subsequently better understood, iron excess is thought to represent an opportunity to selectively kill leukemic cells and spare normal hematopoietic cells, based on their differential iron needs. This review summarizes the physiology of iron metabolism and its deregulation in leukemia, the known ferrotoposis pathways, and therapeutic strategies to target the altered iron metabolism in leukemia for the purposes of initiating ferroptosis in these cancer cells.
Collapse
Affiliation(s)
- Eric Grignano
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France.,Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Service d'Hématologie clinique, Hôpital Cochin, Paris, France
| | - Rudy Birsen
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France.,Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Service d'Hématologie clinique, Hôpital Cochin, Paris, France
| | - Nicolas Chapuis
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France.,Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Service d'Hématologie biologique, Hôpital Cochin, Paris, France
| | - Didier Bouscary
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France.,Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Service d'Hématologie clinique, Hôpital Cochin, Paris, France
| |
Collapse
|
11
|
Wang X, Yang J, Guo G, Feng R, Chen K, Liao Y, Zhang L, Sun L, Huang S, Chen JL. Novel lncRNA-IUR suppresses Bcr-Abl-induced tumorigenesis through regulation of STAT5-CD71 pathway. Mol Cancer 2019; 18:84. [PMID: 30961617 PMCID: PMC6454664 DOI: 10.1186/s12943-019-1013-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023] Open
Abstract
Background Long noncoding RNAs (lncRNAs), defined as the transcripts longer than 200 nt without protein-coding capacity, have been found to be aberrantly expressed in diverse human diseases including cancer. A reciprocal translocation between chromosome 9 and 22 generates the chimeric Bcr-Abl oncogene, which is associated with several hematological malignancies. However, the functional relevance between aberrantly expressed lncRNAs and Bcr-Abl-mediated leukemia remains obscure. Methods LncRNA cDNA microarray was used to identify novel lncRNAs involved in Bcr-Abl-mediated cellular transformation. To study the functional relevance of novel imatinib-upregulated lncRNA (IUR) family in Abl-induced tumorigenesis, Abl-transformed cell survival and xenografted tumor growth in mice was evaluated. Primary bone marrow transformation and in vivo leukemia transplant using lncRNA-IUR knockdown (KD) transgenic mice were further conducted to corroborate the role of lncRNA-IUR in Abl-induced tumorigenesis. Transcriptome RNA-seq, Western blot, RNA pull down and RNA Immunoprecipitation (RIP) were employed to determine the mechanisms by which lncRNA-IUR-5 regulates Bcr-Abl-mediated tumorigenesis. Results We identified a conserved lncRNA-IUR family as a key negative regulator of Bcr-Abl-induced tumorigenesis. Increased expression of lncRNA-IUR was detected in both human and mouse Abl-transformed cells upon imatinib treatment. In contrast, reduced expression of lncRNA-IUR was observed in the peripheral blood lymphocytes derived from Bcr-Abl-positive acute lymphoblastic leukemia (ALL) patients compared to normal subjects. Knockdown of lncRNA-IUR remarkably promoted Abl-transformed leukemic cell survival and xenografted tumor growth in mice, whereas overexpression of lncRNA-IUR had opposite effects. Also, silencing murine lncRNA-IUR promoted Bcr-Abl-mediated primary bone marrow transformation and Abl-transformed leukemia cell survival in vivo. Besides, knockdown of murine lncRNA-IUR in transgenic mice provided a favorable microenvironment for development of Abl-mediated leukemia. Finally, we demonstrated that lncRNA-IUR-5 suppressed Bcr-Abl-mediated tumorigenesis by negatively regulating STAT5-mediated expression of CD71. Conclusions The results suggest that lncRNA-IUR may act as a critical tumor suppressor in Bcr-Abl-mediated tumorigenesis by suppressing the STAT5-CD71 pathway. This study provides new insights into functional involvement of lncRNAs in leukemogenesis. Electronic supplementary material The online version of this article (10.1186/s12943-019-1013-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xuefei Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jianling Yang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Guijie Guo
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Riyue Feng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Ke Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Yuan Liao
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianfeng Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing, China
| | - Liping Sun
- Department of Blood Transfusion, Chinese PLA General Hospital, Beijing, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
12
|
Carulli G, Sammuri P, Domenichini C, Rousseau M, Ottaviano V, Ferreri MI, Azzarà A, Caracciolo F, Petrini M. Morphologic and immunophenotypic features of a case of acute monoblastic leukemia with unusual positivity for Glycophorin-A. Hematol Rep 2018; 10:7823. [PMID: 30631409 PMCID: PMC6297862 DOI: 10.4081/hr.2018.7823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/29/2018] [Indexed: 11/23/2022] Open
Abstract
Acute monoblastic leukemia (AMoL) is characterized by cells with highly undifferentiated morphology. Cytochemistry with non-specific esterases is negative in up to 20% of cases. Immunophenotyping by flow cytometry has an essential role in diagnosing such a subtype of leukemia and a multiparametric approach with a wide monoclonal antibody panel is necessary. We describe a case of AMoL with morphology resembling either plasma blasts or very immature erythroblasts. Diagnosis was made by alpha-naphtyl-acetate esterase staining and with immunophenotyping, which was made with a wide monoclonal antibody panel. Blasts were positive for monocytic markers. Most of leukemic cells, however, were positive for Glycophorin-A. The presence of Glycophorin-A, which is considered as a specific marker of the erythroid lineage, has never been reported previously in cases of AMoL. This peculiar immunophenotype might be interpreted as deriving from a common myelo-erythroid precursor undergone leukemic transformation.
Collapse
|