1
|
Giannetti M, Palleschi A, Ricciardi B, Venanzi M. A Spectroscopic and Molecular Dynamics Study on the Aggregation Properties of a Lipopeptide Analogue of Liraglutide, a Therapeutic Peptide against Diabetes Type 2. Molecules 2023; 28:7536. [PMID: 38005270 PMCID: PMC10674484 DOI: 10.3390/molecules28227536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The pharmacokinetics of peptide drugs are strongly affected by their aggregation properties and the morphology of the nanostructures they form in their native state as well as in their therapeutic formulation. In this contribution, we analyze the aggregation properties of a Liraglutide analogue (LG18), a leading drug against diabetes type 2. LG18 is a lipopeptide characterized by the functionalization of a lysine residue (K26) with an 18C lipid chain. To this end, spectroscopic experiments, dynamic light scattering measurements, and molecular dynamics simulations were carried out, following the evolution of the aggregation process from the small LG18 clusters formed at sub-micromolar concentrations to the mesoscopic aggregates formed by aged micromolar solutions. The critical aggregation concentration of LG18 in water (pH = 8) was found to amount to 4.3 μM, as assessed by the pyrene fluorescence assay. MD simulations showed that the LG18 nanostructures are formed by tetramer building blocks that, at longer times, self-assemble to form micrometric supramolecular architectures.
Collapse
Affiliation(s)
| | | | | | - Mariano Venanzi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (M.G.); (A.P.); (B.R.)
| |
Collapse
|
2
|
Mráziková L, Neprašová B, Mengr A, Popelová A, Strnadová V, Holá L, Železná B, Kuneš J, Maletínská L. Lipidized Prolactin-Releasing Peptide as a New Potential Tool to Treat Obesity and Type 2 Diabetes Mellitus: Preclinical Studies in Rodent Models. Front Pharmacol 2021; 12:779962. [PMID: 34867411 PMCID: PMC8637538 DOI: 10.3389/fphar.2021.779962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are preconditions for the development of metabolic syndrome, which is reaching pandemic levels worldwide, but there are still only a few anti-obesity drugs available. One of the promising tools for the treatment of obesity and related metabolic complications is anorexigenic peptides, such as prolactin-releasing peptide (PrRP). PrRP is a centrally acting neuropeptide involved in food intake and body weight (BW) regulation. In its natural form, it has limitations for peripheral administration; thus, we designed analogs of PrRP lipidized at the N-terminal region that showed high binding affinities, increased stability and central anorexigenic effects after peripheral administration. In this review, we summarize the preclinical results of our chronic studies on the pharmacological role of the two most potent palmitoylated PrRP31 analogs in various mouse and rat models of obesity, glucose intolerance, and insulin resistance. We used mice and rats with diet-induced obesity fed a high-fat diet, which is considered to simulate the most common form of human obesity, or rodent models with leptin deficiency or disrupted leptin signaling in which long-term food intake regulation by leptin is distorted. The rodent models described in this review are models of metabolic syndrome with different severities, such as obesity or morbid obesity, prediabetes or diabetes and hypertension. We found that the effects of palmitoylated PrRP31 on food intake and BW but not on glucose intolerance require intact leptin signaling. Thus, palmitoylated PrRP31 analogs have potential as therapeutics for obesity and related metabolic complications.
Collapse
Affiliation(s)
- Lucia Mráziková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech
| | - Barbora Neprašová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech.,Institute of Physiology, Czech Academy of Sciences, Prague, Czech
| | - Anna Mengr
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech
| | - Andrea Popelová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech
| | - Veronika Strnadová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech
| | - Lucie Holá
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech.,Institute of Physiology, Czech Academy of Sciences, Prague, Czech
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech
| |
Collapse
|
3
|
LC-MS/MS analysis of lipidized analogs of prolactin-releasing peptide utilizing a monolithic column and simple sample preparation. Bioanalysis 2017; 9:1319-1328. [PMID: 28901165 DOI: 10.4155/bio-2017-0125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AIM Novel compounds for obesity treatment are currently being studied employing lipidized analogs of anorexigenic neuropeptides. Various analogs of prolactin-releasing peptide have demonstrated their ability to decrease food intake. Adequate analytical tools are required to support corresponding research. Methodology & results: An analytical method was developed that includes simple dilution of plasma samples prior to liquid chromatography-mass spectrometry and employs a monolithic column for the determination of lipidized analogs of prolactin-releasing peptide in complex biological samples. A multiple reaction monitoring approach was applied that included matrix calibration and an internal standard and produced a linear calibration range 20-200 ng ml-1 in rat and macaque plasma samples. CONCLUSION A straightforward, simple and reliable analytical method was developed satisfying major validation criteria.
Collapse
|