1
|
Li Z, Wang C, Liu J, Li P, Feng H. In Vitro Investigations into the Potential Drug Interactions of Pseudoginsenoside DQ Mediated by Cytochrome P450 and Human Drug Transporters. Molecules 2024; 29:2482. [PMID: 38893358 PMCID: PMC11173382 DOI: 10.3390/molecules29112482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/03/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Pseudoginsenoside DQ (PDQ), an ocotillol-type ginsenoside, is synthesized with protopanaxadiol through oxidative cyclization. PDQ exhibits good anti-arrhythmia activity. However, the inhibitory effect of PDQ on the cytochrome 450 (CYP450) enzymes and major drug transporters is still unclear. Inhibition of CYP450 and drug transporters may affect the efficacy of the drugs being used together with PDQ. These potential drug-drug interactions (DDIs) are essential for the clinical usage of drugs. In this study, we investigated the inhibitory effect of PDQ on seven CYP450 enzymes and seven drug transporters with in vitro models. PDQ has a significant inhibitory effect on CYP2C19 and P-glycoprotein (P-gp) with a half-inhibitory concentration (IC50) of 0.698 and 0.41 μM, respectively. The inhibition of CYP3A4 and breast cancer-resistant protein (BCRP) is less potent, with IC50 equal to 2.02-6.79 and 1.08 μM, respectively.
Collapse
Affiliation(s)
- Zhuo Li
- School of Pharmaceutical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (Z.L.); (C.W.); (J.L.); (P.L.)
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (Z.L.); (C.W.); (J.L.); (P.L.)
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (Z.L.); (C.W.); (J.L.); (P.L.)
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (Z.L.); (C.W.); (J.L.); (P.L.)
| | - Hao Feng
- Department of Human Anatomy, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China
| |
Collapse
|
2
|
Granados JC, Watrous JD, Long T, Rosenthal SB, Cheng S, Jain M, Nigam SK. Regulation of Human Endogenous Metabolites by Drug Transporters and Drug Metabolizing Enzymes: An Analysis of Targeted SNP-Metabolite Associations. Metabolites 2023; 13:171. [PMID: 36837791 PMCID: PMC9958903 DOI: 10.3390/metabo13020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Drug transporters and drug-metabolizing enzymes are primarily known for their role in the absorption, distribution, metabolism, and excretion (ADME) of small molecule drugs, but they also play a key role in handling endogenous metabolites. Recent cross-tissue co-expression network analyses have revealed a "Remote Sensing and Signaling Network" of multispecific, oligo-specific, and monospecific transporters and enzymes involved in endogenous metabolism. This includes many proteins from families involved in ADME (e.g., SLC22, SLCO, ABCC, CYP, UGT). Focusing on the gut-liver-kidney axis, we identified the endogenous metabolites potentially regulated by this network of ~1000 proteins by associating SNPs in these genes with the circulating levels of thousands of small, polar, bioactive metabolites, including free fatty acids, eicosanoids, bile acids, and other signaling metabolites that act in part via G-protein coupled receptors (GPCRs), nuclear receptors, and kinases. We identified 77 genomic loci associated with 7236 unique metabolites. This included metabolites that were associated with multiple, distinct loci, indicating coordinated regulation between multiple genes (including drug transporters and drug-metabolizing enzymes) of specific metabolites. We analyzed existing pharmacogenomic data and noted SNPs implicated in endogenous metabolite handling (e.g., rs4149056 in SLCO1B1) also affecting drug ADME. The overall results support the existence of close relationships, via interactions with signaling metabolites, between drug transporters and drug-metabolizing enzymes that are part of the Remote Sensing and Signaling Network, and with GPCRs and nuclear receptors. These analyses highlight the potential for drug-metabolite interactions at the interfaces of the Remote Sensing and Signaling Network and the ADME protein network.
Collapse
Affiliation(s)
- Jeffry C. Granados
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeramie D. Watrous
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Tao Long
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Sara Brin Rosenthal
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA 92093, USA
| | - Susan Cheng
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mohit Jain
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Sanjay K. Nigam
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Mirahmad M, Sabourian R, Mahdavi M, Larijani B, Safavi M. In vitro cell-based models of drug-induced hepatotoxicity screening: progress and limitation. Drug Metab Rev 2022; 54:161-193. [PMID: 35403528 DOI: 10.1080/03602532.2022.2064487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Drug-induced liver injury (DILI) is one of the major causes of post-approval withdrawal of therapeutics. As a result, there is an increasing need for accurate predictive in vitro assays that reliably detect hepatotoxic drug candidates while reducing drug discovery time, costs, and the number of animal experiments. In vitro hepatocyte-based research has led to an improved comprehension of the underlying mechanisms of chemical toxicity and can assist the prioritization of therapeutic choices with low hepatotoxicity risk. Therefore, several in vitro systems have been generated over the last few decades. This review aims to comprehensively present the development and validation of 2D (two-dimensional) and 3D (three-dimensional) culture approaches on hepatotoxicity screening of compounds and highlight the main factors affecting predictive power of experiments. To this end, we first summarize some of the recognized hepatotoxicity mechanisms and related assays used to appraise DILI mechanisms and then discuss the challenges and limitations of in vitro models.
Collapse
Affiliation(s)
- Maryam Mirahmad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Sabourian
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| |
Collapse
|
4
|
Rao Gajula SN, Pillai MS, Samanthula G, Sonti R. Cytochrome P450 enzymes: a review on drug metabolizing enzyme inhibition studies in drug discovery and development. Bioanalysis 2021; 13:1355-1378. [PMID: 34517735 DOI: 10.4155/bio-2021-0132] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Assessment of drug candidate's potential to inhibit cytochrome P450 (CYP) enzymes remains crucial in pharmaceutical drug discovery and development. Both direct and time-dependent inhibition of drug metabolizing CYP enzymes by the concomitant administered drug is the leading cause of drug-drug interactions (DDIs), resulting in the increased toxicity of the victim drug. In this context, pharmaceutical companies have grown increasingly diligent in limiting CYP inhibition liabilities of drug candidates in the early stages and examining risk assessments throughout the drug development process. This review discusses different strategies and decision-making processes for assessing the drug-drug interaction risks by enzyme inhibition and lays particular emphasis on in vitro study designs and interpretation of CYP inhibition data in a stage-appropriate context.
Collapse
Affiliation(s)
- Siva Nageswara Rao Gajula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Balanagar, Telangana, 50003, India
| | - Megha Sajakumar Pillai
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Balanagar, Telangana, 50003, India
| | - Gananadhamu Samanthula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Balanagar, Telangana, 50003, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Balanagar, Telangana, 50003, India
| |
Collapse
|
5
|
He Z, Wang Z, Gao B, Liu S, Zhao X, Shi H, Wang M. Stereostructure-activity mechanism of cyproconazole by cytochrome P450 in rat liver microsomes: A combined experimental and computational study. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125764. [PMID: 33827004 DOI: 10.1016/j.jhazmat.2021.125764] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Cyproconazole (CPZ), representing the chiral triazole fungicides, is widely used in the pharmaceutical and agricultural fields. To clarify its potential adverse effects on the generalized CYP-mediated processes within mammalian, a comparative experimental and computational approach was employed to investigate the CYP-mediated metabolism processes of CPZ stereoisomers in rat liver microsomes (RLMs). The depletion rate of CPZ stereoisomers in vitro incubation system with RLMs followed the order RR-> SS-> SR-> RS-CPZ. The results of kinetic assays were in line with the depletion rate results. Further inhibition assay confirmed the stereoselective metabolism of CPZ stereoisomers by different CYP isoforms. Molecular dynamics (MD) simulation revealed the stereoselective metabolism mechanism. Several hydrogen bonds and π-stacking restrict the position of CPZ isomers in the active cavity of CYPs so that the 4'-nitrogen on the triazole ring can bind closely to the heme of CYP, which results in the metabolism of CPZ isomers. By combining the computational and experimental approaches, the structure-activity relationship of CPZ and CYP was elucidated, and this method can be further applied to predict the degree of uncertainty in the process of xenobiotic biotransformation of triazole fungicides and serve as a basis for risk assessment.
Collapse
Affiliation(s)
- Zongzhe He
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Zhen Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Beibei Gao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China; Toxicological Center, University of Antwerp, Wilrijk, Belgium
| | - Shiling Liu
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Xuejun Zhao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China.
| |
Collapse
|
6
|
Maekawa Y, Ayano E, Nagase K, Kanazawa H. Effective Separation for New Therapeutic Modalities Utilizing Temperature-responsive Chromatography. ANAL SCI 2021; 37:651-660. [PMID: 33518586 DOI: 10.2116/analsci.20scr09] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/22/2021] [Indexed: 08/09/2023]
Abstract
In recent years, drug discovery and therapeutics trends have shifted from a focus on small-molecule compounds to biopharmaceuticals, genes, cell therapy, and regenerative medicine. Therefore, new approaches and technologies must be developed to respond to these changes in medical care. To achieve this, we applied a temperature-responsive separation system to purify a variety of proteins and cells. We developed a temperature-responsive chromatography technique based on a poly(N-isopropylacrylamide) (PNIPAAm)-grafted stationary phase. This method may be applied to various types of protein and cell separation applications by optimizing the properties of the modified polymers used in this system. Therefore, the developed temperature-responsive HPLC columns and temperature-responsive solid-phase extraction (TR-SPE) columns can be an effective separation tool for new therapeutic modalities such as monoclonal antibodies, nucleic acid drugs, and cells.
Collapse
Affiliation(s)
- Yutaro Maekawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Eri Ayano
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Hideko Kanazawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan.
| |
Collapse
|
7
|
Lohasz C, Bonanini F, Hoelting L, Renggli K, Frey O, Hierlemann A. Predicting Metabolism-Related Drug-Drug Interactions Using a Microphysiological Multitissue System. ACTA ACUST UNITED AC 2020; 4:e2000079. [PMID: 33073544 DOI: 10.1002/adbi.202000079] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/30/2020] [Indexed: 12/20/2022]
Abstract
Drug-drug interactions (DDIs) occur when the pharmacological activity of one drug is altered by a second drug. As multimorbidity and polypharmacotherapy are becoming more common due to the increasing age of the population, the risk of DDIs is massively increasing. Therefore, in vitro testing methods are needed to capture such multiorgan events. Here, a scalable, gravity-driven microfluidic system featuring 3D microtissues (MTs) that represent different organs for the prediction of drug-drug interactions is used. Human liver microtissues (hLiMTs) are combined with tumor microtissues (TuMTs) and treated with drug combinations that are known to cause DDIs in vivo. The testing system is able to capture and quantify DDIs upon co-administration of the anticancer prodrugs cyclophosphamide or ifosfamide with the antiretroviral drug ritonavir. Dosage of ritonavir inhibits hepatic metabolization of the two prodrugs to different extents and decreases their efficacy in acting on TuMTs. The flexible MT compartment design of the system, the use of polystyrene as chip material, and the assembly of several chips in stackable plates offer the potential to significantly advance preclinical substance testing. The possibility of testing a broad variety of drug combinations to identify possible DDIs will improve the drug development process and increase patient safety.
Collapse
Affiliation(s)
- Christian Lohasz
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, 4058, Switzerland
| | - Flavio Bonanini
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, 4058, Switzerland
| | | | - Kasper Renggli
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, 4058, Switzerland
| | | | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, 4058, Switzerland
| |
Collapse
|
8
|
Maekawa Y, Okamoto N, Okada Y, Nagase K, Kanazawa H. Green analytical method for the simultaneous analysis of cytochrome P450 probe substrates by poly(N-isopropylacrylamide)-based temperature-responsive chromatography. Sci Rep 2020; 10:8828. [PMID: 32483226 PMCID: PMC7264224 DOI: 10.1038/s41598-020-65270-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
High-performance liquid chromatography (HPLC) is the most common analytical method practiced in various fields and used for analysis of almost all drug compounds in the pharmaceutical industries. During drug development, an evaluation of potential drug interaction with cytochrome P450 (CYP) is essential. A "cocktail" approach is often used in drug development to evaluate the effect of a drug candidate on multiple CYP enzymes in a single experiment. So far, simultaneous analysis of multiple CYP substrates, which have greatly different structure and physicochemical properties, has required organic solvents and mobile phase gradient methods. However, despite the recent emphasis on environmental protection, analytical methods that use only aqueous solvents without the use of organic solvents for separation have not been studied well. This study sought to develop the simultaneous analysis of multiple CYP substrates by using poly(N-isopropylacrylamide) (PNIPAAm)-based temperature-responsive chromatography with only aqueous solvents and isocratic methods. Good separation of multiple CYP substrates was achieved without using organic solvents and any gradient methods by temperature-responsive chromatography utilizing a P(NIPAAm-co-n-butyl methacrylate (BMA))- and P(NIPAAm-co-N-acryloyl L-tryptophan methyl ester (L-Trp-OMe))-grafted silica column. Overall, PNIPAAm-based temperature-responsive chromatography represents a remarkably simple, versatile, and environmentally friendly bioanalytical method for CYP substrates and their metabolites.
Collapse
Affiliation(s)
- Yutaro Maekawa
- Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Naoya Okamoto
- Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Yuji Okada
- Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Hideko Kanazawa
- Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| |
Collapse
|
9
|
Novel LC–MS assays impacting CYP and transporter drug–drug interaction evaluations. Bioanalysis 2018. [DOI: 10.4155/bio-2018-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|