1
|
Kruse M, Stankeviciute S, Perry S. Clinical pharmacology-how it shapes the drug development journey. Eur J Clin Pharmacol 2025; 81:597-604. [PMID: 40000475 PMCID: PMC11922982 DOI: 10.1007/s00228-025-03811-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
Every drug development is a complex and long journey. Clinical pharmacology is an essential discipline in modern drug development. With its applications, computational modelling, and simulation techniques, it can significantly contribute to the efficiency in drug development today. In this perspective, we highlight why pharmacokinetics and pharmacodynamics are important, what developers need to consider in their clinical development programme, how modelling influences the development process, and discuss recent trends such as artificial intelligence and machine learning that have the potential to reshape future drug development.
Collapse
|
2
|
Gagnon E, Gill D, Burgess S, Arsenault BJ. Remnant cholesterol concentrations best explain the cardiovascular benefit of APOC3 genetic inhibition: a drug target Mendelian randomization study. EUROPEAN HEART JOURNAL OPEN 2025; 5:oeaf018. [PMID: 40161303 PMCID: PMC11951255 DOI: 10.1093/ehjopen/oeaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/16/2025] [Accepted: 02/28/2025] [Indexed: 04/02/2025]
Abstract
Aims Apolipoprotein C-III (APOC3) inhibitors are approved for hypertriglyceridaemia. Genetic evidence suggests that APOC3 inhibition may also prevent coronary artery disease (CAD), but mechanisms remain unclear. Methods and results To clarify how APOC3 inhibition could prevent CAD, we performed two-step cis-Mendelian randomization using genetic variants in the APOC3 gene region associated with plasma levels of APOC3. For comparison, we investigated proprotein convertase subtilisin/kexin type 9 (PCSK9). Potential mediators included apolipoprotein B, triglycerides, LDL-cholesterol, and remnant cholesterol measured by nuclear magnetic resonance spectroscopy in mostly fasting samples from Karjalainen et al., and in non-fasting samples from the UK Biobank. CAD data were from CARDIoGRAMplusC4D. APOC3 associations with apolipoprotein B and remnant cholesterol levels were two-fold larger in the study by Karjalainen et al. (55% fasted individuals) when compared with the UK Biobank study (non-fasted individuals). Genetically predicted lower APOC3 and PCSK9 levels were similarly associated with reduced CAD risk (OR = 0.83, 95% CI = 0.75-0.92, P = 4.6e-04 and 0.76, 95% CI = 0.73-0.80, P = 1.6e-31, respectively). In the two-step cis-Mendelian randomization analysis, the association between genetically predicted APOC3 and CAD was attenuated to null when adjusting for apolipoprotein B, triglycerides, or remnant cholesterol. Multivariable Mendelian randomization using genome-wide variants showed that remnant cholesterol, not triglycerides, was conditionally associated with CAD risk. Conclusion Remnant cholesterol best explains the mechanism through which APOC3 inhibition could prevent CAD. APOC3 inhibition may influence fasting remnant cholesterol to a greater extent than non-fasting remnant cholesterol. People with high levels of remnant cholesterol could benefit from APOC3 inhibition.
Collapse
Affiliation(s)
- Eloi Gagnon
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Y-3106, 2725 chemin Ste-Foy, Québec, QC, Canada G1V 4G5
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, 90 Wood Ln, London W12 0BZ, UK
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, East Forvie Building, Forvie, Robinson Way, Cambridge CB2 0SR, UK
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB2 0SL, UK
| | - Benoit J Arsenault
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Y-3106, 2725 chemin Ste-Foy, Québec, QC, Canada G1V 4G5
- Department of Medicine, Faculty of Medicine, Université Laval, 1050 Av. de la Médecine, Québec City, QC, Canada G1V 0A6
| |
Collapse
|
3
|
Agnello L, Gambino CM, Del Ben F, Ciaccio AM, Scazzone C, Ciaccio M. Establishing Decisional Cutoff Values of Neurofilament Light Chains in Cerebrospinal Fluid Measured by Fully Automated Chemiluminescent Enzyme Immunoassay. J Clin Lab Anal 2025; 39:e25152. [PMID: 39812240 PMCID: PMC11848146 DOI: 10.1002/jcla.25152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/22/2024] [Accepted: 01/04/2025] [Indexed: 01/16/2025] Open
Abstract
INTRODUCTION Neurofilament light chain (NfL) is one of the most important biomarkers in the field of clinical neurochemistry. Several analytical methods have been developed in the last decade. Recently, Fujirebio introduced a ready-to-use assay kit for measuring NfL levels in the cerebrospinal fluid (CSF) on the fully automated LUMIPULSE G System. In this study, we established the decisional cutoffs for CSF NfL. MATERIALS AND METHODS We performed a retrospective observational study including patients with cognitive decline. CSF NfL levels were measured by two analytical methods: the NF-light ELISA kit (UmanDiagnostics) and the Lumipulse G1200 fully automated system (Fujirebio). We calculated the cutoffs for the Lumipulse, starting from the consolidated cutoffs of the ELISA method for each age and using the equation obtained by the regression analysis. RESULTS The study population consisted of 100 patients with cognitive decline. The median levels of CSF NfL measured by Lumipulse and ELISA were 776.5 ± 772.6 pg/mL and 473.5 ± 443.5 pg/mL, respectively, significantly different (p < 0.001). The Spearman's rank correlation coefficient was 0.962, indicating a robust positive correlation between the two measurement methods. The equation derived from the Passing-Bablok regression analysis was CSF CLEIA = -61.16 + 1.83 × CSF ELISA. Based on this equation, we defined the decisional cutoff values. CONCLUSIONS Decisional cutoffs are fundamental tools for guiding clinicians to use biomarkers' results and interpretation appropriately. This is the first study establishing the decisional cutoff value of NfL measured by Lumipulse, a fully automated platform widely used in clinical laboratories.
Collapse
Affiliation(s)
- Luisa Agnello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory MedicineUniversity of PalermoPalermoItaly
| | - Caterina Maria Gambino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory MedicineUniversity of PalermoPalermoItaly
- Department of Laboratory MedicineUniversity Hospital Paolo GiacconePalermoItaly
| | - Fabio Del Ben
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico (CRO)‐IRCCSAvianoItaly
| | - Anna Maria Ciaccio
- Internal Medicine and Medical Specialties “G. D'Alessandro", Department of Health Promotion, Maternal and Infant CareUniversity of PalermoPalermoItaly
| | - Concetta Scazzone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory MedicineUniversity of PalermoPalermoItaly
| | - Marcello Ciaccio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory MedicineUniversity of PalermoPalermoItaly
- Department of Laboratory MedicineUniversity Hospital Paolo GiacconePalermoItaly
| |
Collapse
|
4
|
Ursino M, Villacampa G, Rekowski J, Dimairo M, Solovyeva O, Ashby D, Berlin J, Boix O, Calvert M, Chan AW, Coschi CH, Evans TRJ, Garrett-Mayer E, Golub RM, Guo C, Hayward KS, Hopewell S, Isaacs JD, Ivy SP, Jaki T, Kholmanskikh O, Kightley A, Lee S, Liu R, Mander A, Marshall LV, Matcham J, Patel D, Peck R, Rantell KR, Richards DP, Rouhifard M, Seymour L, Tanaka Y, Weir CJ, de Bono J, Yap C. SPIRIT-DEFINE explanation and elaboration: recommendations for enhancing quality and impact of early phase dose-finding clinical trials protocols. EClinicalMedicine 2025; 79:102988. [PMID: 39877554 PMCID: PMC11773215 DOI: 10.1016/j.eclinm.2024.102988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 01/31/2025] Open
Abstract
Transparent and accurate reporting in early phase dose-finding (EPDF) clinical trials is crucial for informing subsequent larger trials. The SPIRIT statement, designed for trial protocol content, does not adequately cover the distinctive features of EPDF trials. Recent findings indicate that the protocol contents in past EPDF trials frequently lacked completeness and clarity. To address this gap, the international consensus-driven SPIRIT-DEFINE checklist was developed through a robust methodological framework for guideline development, with the aim to improve completeness and clarity in EPDF trial protocols. The checklist builds on the SPIRIT statement, adding 17 new items and modifying 15 existing ones.The SPIRIT-DEFINE explanation and elaboration (E&E) document provides comprehensive information to enhance understanding and usability of the SPIRIT-DEFINE checklist when writing an EPDF trial protocol. Each new or modified checklist item is accompanied by a detailed description, its rationale with supportive evidence, and examples of good reporting curated from EPDF trial protocols covering a range of therapeutic areas and interventions. We recommend utilising this paper alongside the SPIRIT statement, and any relevant extensions, to enhance the development and review of EPDF trial protocols.By facilitating adoption of the SPIRIT-DEFINE statement for EPDF trials, this E&E document can promote enhancement of methodological rigour, patient safety, transparency, and facilitate the generation of high-quality, reproducible evidence that will strengthen the foundation of early phase research and ultimately improve patient outcomes. Funding This work is a further extension of the SPIRIT-DEFINE study, which obtained no external funding. The principal investigator (CY) used internal staff resources, together with additional resources from external partners, to conduct this study. The SPIRIT-DEFINE study is a component of the DEFINE project, which also developed the MRC/NIHR funded CONSORT-DEFINE guidance. ICR-CTSU receives programmatic infrastructure funding from Cancer Research UK (C1491/A25351; CTUQQR-Dec22/100004), which has contributed to accelerating the advancement and successful completion of this work.
Collapse
Affiliation(s)
- Moreno Ursino
- ReCAP/F CRIN, INSERM, 5400, Nancy, France
- Unit of Clinical Epidemiology, University Hospital Centre Robert Debré, Université Paris Cité, Paris, France
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
- HeKA Team, Centre Inria, Paris, France
| | - Guillermo Villacampa
- Clinical Trials and Statistics Unit at The Institute of Cancer Research, London, UK
- Statistics Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- SOLTI Breast Cancer Research Group, Barcelona, Spain
| | - Jan Rekowski
- Clinical Trials and Statistics Unit at The Institute of Cancer Research, London, UK
| | - Munyaradzi Dimairo
- Division of Population Health, Sheffield Centre for Health and Related Research, University of Sheffield, Sheffield, UK
| | - Olga Solovyeva
- Clinical Trials and Statistics Unit at The Institute of Cancer Research, London, UK
| | - Deborah Ashby
- School of Public Health, Imperial College London, St Mary's Hospital, London, UK
| | | | | | - Melanie Calvert
- Centre for Patient Reported Outcomes Research, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK
- National Institute for Health and Care Research Applied Research Collaboration West Midlands, University of Birmingham, Birmingham, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Precision Transplant and Cellular Therapeutics, University of Birmingham, Birmingham, UK
- National Institute for Health and Care Research Birmingham Biomedical Research Centre, NIHR Birmingham Biomedical Research Centre, Institute of Translational Medicine, University Hospital NHS Foundation Trust, Birmingham, UK
| | - An-Wen Chan
- Department of Medicine, Women's College Research Institute, University of Toronto, Toronto, Canada
| | | | - Thomas R. Jeffry Evans
- Institute of Cancer Sciences, CR-UK Beatson Institute, University of Glasgow, Glasgow, UK
| | - Elizabeth Garrett-Mayer
- Center for Research and Analytics, American Society of Clinical Oncology, Alexandria, VA, USA
| | - Robert M. Golub
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christina Guo
- The Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - Kathryn S. Hayward
- Departments of Physiotherapy and Medicine, University of Melbourne, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Sally Hopewell
- Oxford Clinical Research Unit, NDORMS, University of Oxford, Oxford, UK
| | - John D. Isaacs
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
| | - S. Percy Ivy
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Institute of Health, Bethesda, MD, USA
| | - Thomas Jaki
- MRC Biostatistics Unit, Cambridge University, Cambridge, UK
- Computational Statistics Group, University of Regensburg, Regensburg, Germany
| | | | - Andrew Kightley
- Patient and Public Involvement and Engagement (PPIE) Lead, Lichfield, UK
| | - Shing Lee
- Columbia University Mailman School of Public Health, New York, NY, USA
| | | | - Adrian Mander
- Centre for Trials Research, Cardiff University, Cardiff, UK
| | - Lynley V. Marshall
- The Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - James Matcham
- Strategic Consulting, Cytel (Australia), Perth, WA, Australia
| | - Dhrusti Patel
- Clinical Trials and Statistics Unit at The Institute of Cancer Research, London, UK
| | - Richard Peck
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
- Hoffmann-La Roche, Basel, Switzerland
| | | | | | - Mahtab Rouhifard
- Clinical Trials and Statistics Unit at The Institute of Cancer Research, London, UK
| | | | - Yoshiya Tanaka
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Christopher J. Weir
- Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Johann de Bono
- The Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - Christina Yap
- Clinical Trials and Statistics Unit at The Institute of Cancer Research, London, UK
| |
Collapse
|
5
|
Rekowski J, Guo C, Solovyeva O, Dimairo M, Rouhifard M, Patel D, Alger E, Ashby D, Berlin J, Boix O, Calvert M, Chan AW, Coschi CH, de Bono J, Evans TRJ, Garrett–Mayer E, Golub RM, Hayward KS, Hopewell S, Isaacs JD, Ivy SP, Jaki T, Kholmanskikh O, Kightley A, Lee S, Liu R, Maia I, Mander A, Marshall LV, Matcham J, Peck R, Rantell KR, Richards DP, Seymour L, Tanaka Y, Ursino M, Weir CJ, Yap C. CONSORT-DEFINE explanation and elaboration: recommendations for enhancing reporting quality and impact of early phase dose-finding clinical trials. EClinicalMedicine 2025; 79:102987. [PMID: 39877553 PMCID: PMC11773258 DOI: 10.1016/j.eclinm.2024.102987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 01/31/2025] Open
Abstract
Early phase dose-finding (EPDF) trials are key in the development of novel therapies, with their findings directly informing subsequent clinical development phases and providing valuable insights for reverse translation. Comprehensive and transparent reporting of these studies is critical for their accurate and critical interpretation, which may improve and expedite therapeutic development. However, quality of reporting of design characteristics and results from EPDF trials is often variable and incomplete. The international consensus-based CONSORT-DEFINE (Consolidated Standards for Reporting Trials Dose-finding Extension) statement, an extension of the CONSORT statement for randomised trials, was developed to improve the reporting of EPDF trials. The CONSORT-DEFINE statement introduced 21 new items and modified 19 existing CONSORT items.This CONSORT-DEFINE Explanation and Elaboration (E&E) document provides important information to enhance understanding and facilitate the implementation of the CONSORT-DEFINE checklist. For each new or modified checklist item, we provide a detailed description and its rationale with supporting evidence, and present examples from EPDF trial reports published in peer-reviewed scientific journals. When reporting the results of EPDF trials, authors are encouraged to consult the CONSORT-DEFINE E&E document, together with the CONSORT and CONSORT-DEFINE statement papers, and adhere to their recommendations. Widespread adoption of the CONSORT-DEFINE statement is likely to enhance the reporting quality of EPDF trials, thus facilitating the peer review of such studies and their appraisal by researchers, regulators, ethics committee members, and funders. Funding This work is a further extension of the CONSORT-DEFINE study, which was funded by the UK Medical Research Council (MRC)-National Institute for Health and Care Research (NIHR) Methodology Research Programme (MR/T044934/1). The Clinical Trials and Statistics Unit at The Institute of Cancer Research (ICR-CTSU) receives programmatic infrastructure funding from Cancer Research UK (C1491/A25351; CTUQQR-Dec 22/100 004), which has contributed to accelerating the advancement and successful completion of this work.
Collapse
Affiliation(s)
- Jan Rekowski
- Clinical Trials and Statistics Unit at the Institute of Cancer Research, London, UK
| | - Christina Guo
- The Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - Olga Solovyeva
- Clinical Trials and Statistics Unit at the Institute of Cancer Research, London, UK
| | - Munyaradzi Dimairo
- Division of Population Health, Sheffield Centre for Health and Related Research, University of Sheffield, Sheffield, UK
| | - Mahtab Rouhifard
- Clinical Trials and Statistics Unit at the Institute of Cancer Research, London, UK
| | - Dhrusti Patel
- Clinical Trials and Statistics Unit at the Institute of Cancer Research, London, UK
| | - Emily Alger
- Clinical Trials and Statistics Unit at the Institute of Cancer Research, London, UK
| | - Deborah Ashby
- School of Public Health, Imperial College London, St Mary's Hospital, London, UK
| | | | | | - Melanie Calvert
- Centre for Patient Reported Outcomes Research, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK
- National Institute for Health and Care Research Applied Research Collaboration West Midlands, University of Birmingham, Birmingham, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Precision Transplant and Cellular Therapeutics, University of Birmingham, Birmingham, UK
- National Institute for Health and Care Research Birmingham Biomedical Research Centre, NIHR Birmingham Biomedical Research Centre, Institute of Translational Medicine, University Hospital NHS Foundation Trust, Birmingham, UK
| | - An-Wen Chan
- Department of Medicine, Women's College Research Institute, University of Toronto, Toronto, Canada
| | | | - Johann de Bono
- The Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - Thomas R. Jeffry Evans
- Institute of Cancer Sciences, CR-UK Beatson Institute, University of Glasgow, Glasgow, UK
| | - Elizabeth Garrett–Mayer
- Center for Research and Analytics, American Society of Clinical Oncology, Alexandria, VA, USA
| | - Robert M. Golub
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kathryn S. Hayward
- Departments of Physiotherapy and Medicine, University of Melbourne, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Sally Hopewell
- Oxford Clinical Research Unit, NDORMS, University of Oxford, Oxford, UK
| | - John D. Isaacs
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
| | - S. Percy Ivy
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Institute of Health, Bethesda, MD, USA
| | - Thomas Jaki
- MRC Biostatistics Unit, Cambridge University, Cambridge, UK
- Computational Statistics Group, University of Regensburg, Regensburg, Germany
| | | | - Andrew Kightley
- Patient and Public Involvement and Engagement (PPIE) Lead, Lichfield, UK
| | - Shing Lee
- Columbia University Mailman School of Public Health, New York, NY, USA
| | | | | | - Adrian Mander
- Centre for Trials Research, Cardiff University, Cardiff, UK
| | - Lynley V. Marshall
- The Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - James Matcham
- Strategic Consulting, Cytel (Australia), Perth, WA, Australia
| | - Richard Peck
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
- Hoffmann-La Roche, Basel, Switzerland
| | | | | | | | - Yoshiya Tanaka
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Moreno Ursino
- ReCAP/F CRIN, INSERM, 5400, Nancy, France
- Unit of Clinical Epidemiology, University Hospital Centre Robert Debré, Université Paris Cité, Paris, France
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
- HeKA Team, Centre Inria, Paris, France
| | - Christopher J. Weir
- Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Christina Yap
- Clinical Trials and Statistics Unit at the Institute of Cancer Research, London, UK
| |
Collapse
|
6
|
Sorg BS, Byun JS, Westbrook VA, Tricoli JV, Doroshow JH, Harris LN. NCI workshop on ctDNA in cancer treatment and clinical care. J Natl Cancer Inst 2024; 116:1890-1895. [PMID: 39087596 PMCID: PMC11630565 DOI: 10.1093/jnci/djae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Detection of cell-free circulating tumor DNA (ctDNA) from solid tumors is a fast-evolving field with significant potential for improving patient treatment outcomes. The spectrum of applications for ctDNA assays is broad and includes very diverse intended uses that will require different strategies to demonstrate utility. On September 14-15, 2023, the National Cancer Institute held an in-person workshop in Rockville, MD titled "ctDNA in Cancer Treatment and Clinical Care." The goal of the workshop was to examine what is currently known and what needs to be determined for various ctDNA liquid biopsy use cases related to treatment and management of patients with solid tumors and to explore how the community can best assess the value of ctDNA assays and technology. Additionally, new approaches were presented that may show promise in the future. The information exchanged in this workshop will provide the community with a better understanding of this field and its potential to affect and benefit decision-making in the treatment of patients with solid tumors.
Collapse
Affiliation(s)
- Brian S Sorg
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jung S Byun
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - V Anne Westbrook
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James V Tricoli
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lyndsay N Harris
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Elkahwagy DMAS, Kiriacos CJ, Mansour M. Logistic regression and other statistical tools in diagnostic biomarker studies. Clin Transl Oncol 2024; 26:2172-2180. [PMID: 38530558 PMCID: PMC11333519 DOI: 10.1007/s12094-024-03413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/16/2024] [Indexed: 03/28/2024]
Abstract
A biomarker is a measured indicator of a variety of processes, and is often used as a clinical tool for the diagnosis of diseases. While the developmental process of biomarkers from lab to clinic is complex, initial exploratory stages often focus on characterizing the potential of biomarkers through utilizing various statistical methods that can be used to assess their discriminatory performance, establish an appropriate cut-off that transforms continuous data to apt binary responses of confirming or excluding a diagnosis, or establish a robust association when tested against confounders. This review aims to provide a gentle introduction to the most common tools found in diagnostic biomarker studies used to assess the performance of biomarkers with an emphasis on logistic regression.
Collapse
Affiliation(s)
| | - Caroline Joseph Kiriacos
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Manar Mansour
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| |
Collapse
|
8
|
Saito K, Goda R, Arai K, Asahina K, Kawabata M, Uchiyama H, Andou T, Shimizu H, Takahara K, Kakehi M, Yamauchi S, Nitta SI, Suga T, Fujita H, Ishikawa R, Saito Y. Interlaboratory evaluation of LC-MS-based biomarker assays. Bioanalysis 2024; 16:389-402. [PMID: 38334082 DOI: 10.4155/bio-2023-0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Validation of biomarker assays is crucial for effective drug development and clinical applications. Interlaboratory reproducibility is vital for reliable comparison and combination of data from different centers. This review summarizes interlaboratory studies of quantitative LC-MS-based biomarker assays using reference standards for calibration curves. The following points are discussed: trends in reports, reference and internal standards, evaluation of analytical validation parameters, study sample analysis and normalization of biomarker assay data. Full evaluation of these parameters in interlaboratory studies is limited, necessitating further research. Some reports suggest methods to address variations in biomarker assay data among laboratories, facilitating organized studies and data combination. Method validation across laboratories is crucial for reducing interlaboratory differences and reflecting target biomarker responses.
Collapse
Affiliation(s)
- Kosuke Saito
- National Institute of Health Sciences, Kanagawa, Japan
| | - Ryoya Goda
- Daiichi Sankyo Company Ltd, Tokyo, Japan
| | - Koji Arai
- LSI Medience Corporation, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | - Rika Ishikawa
- National Institute of Health Sciences, Kanagawa, Japan
| | - Yoshiro Saito
- National Institute of Health Sciences, Kanagawa, Japan
| |
Collapse
|
9
|
Yap C, Solovyeva O, de Bono J, Rekowski J, Patel D, Jaki T, Mander A, Evans TRJ, Peck R, Hayward KS, Hopewell S, Ursino M, Rantell KR, Calvert M, Lee S, Kightley A, Ashby D, Chan AW, Garrett-Mayer E, Isaacs JD, Golub R, Kholmanskikh O, Richards D, Boix O, Matcham J, Seymour L, Ivy SP, Marshall LV, Hommais A, Liu R, Tanaka Y, Berlin J, Espinasse A, Dimairo M, Weir CJ. Enhancing reporting quality and impact of early phase dose-finding clinical trials: CONSORT Dose-finding Extension (CONSORT-DEFINE) guidance. BMJ 2023; 383:e076387. [PMID: 37863501 PMCID: PMC10583500 DOI: 10.1136/bmj-2023-076387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2023] [Indexed: 10/22/2023]
Affiliation(s)
| | | | - Johann de Bono
- Institute of Cancer Research, London SM2 5NG, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - Jan Rekowski
- Institute of Cancer Research, London SM2 5NG, UK
| | | | - Thomas Jaki
- MRC Biostatistics Unit, Cambridge University, Cambridge, UK
- Computational Statistics Group, University of Regensburg, Regensburg, Germany
| | - Adrian Mander
- Centre For Trials Research, Cardiff University, Heath Park, Cardiff, UK
| | - Thomas R Jeffry Evans
- Institute of Cancer Sciences, CR-UK Beatson Institute, University of Glasgow, Glasgow, UK
| | - Richard Peck
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
- Hoffmann-La Roche, Basel, Switzerland
| | - Kathryn S Hayward
- Departments of Physiotherapy, and Medicine (Royal Melbourne Hospital), University of Melbourne, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Sally Hopewell
- Oxford Clinical Research Unit, NDORMS, University of Oxford, Oxford, UK
| | - Moreno Ursino
- ReCAP/F CRIN, INSERM, Paris, France
- Unit of Clinical Epidemiology, CHU Robert Debré, APHP, URC, INSERM CIC-EC 1426, Reims, France
- INSERM Centre de Recherche des Cordeliers, Sorbonne University, Paris Cité University, Paris, France
- Health data and model driven approaches for Knowledge Acquisition team, Centre Inria, Paris, France
| | | | - Melanie Calvert
- Centre for Patient Reported Outcomes Research, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK
- National Institute for Health and Care Research (NIHR) Applied Research Collaboration West Midlands, University of Birmingham, Birmingham, UK
- NIHR Research Blood and Transplant Research Unit in Precision Transplant and Cellular Therapeutics, University of Birmingham, Edgbaston, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, Institute of Translational Medicine, University Hospital NHS Foundation Trust, Birmingham, UK
| | - Shing Lee
- Columbia University Mailman School of Public Health, New York, NY, USA
| | | | - Deborah Ashby
- School of Public Health, Imperial College London, London, UK
| | - An-Wen Chan
- Department of Medicine, Women's College Research Institute, University of Toronto, Toronto, ON, Canada
| | - Elizabeth Garrett-Mayer
- Center for Research and Analytics, American Society of Clinical Oncology, Alexandria, VA, USA
| | - John D Isaacs
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
| | - Robert Golub
- Department of Medicine, Northwestern University Feinberg School of Medicine, 633 Clark Street, Evanston, IL, USA
| | - Olga Kholmanskikh
- Federal Agency for Medicines and Health Products, Brussels, Belgium
- European Medicines Agency, Amsterdam, Netherlands
| | - Dawn Richards
- Clinical Trials Ontario, MaRS Centre, Toronto, ON, Canada
| | | | - James Matcham
- Strategic Consulting, Cytel (Australia), Perth, WA, Australia
| | - Lesley Seymour
- Investigational New Drug Programme, Canadian Cancer Trials Group, Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - S Percy Ivy
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Institute of Health, Bethesda, MD, USA
| | - Lynley V Marshall
- Institute of Cancer Research, London SM2 5NG, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - Antoine Hommais
- Department of Clinical Research, National Cancer Institute, Boulogne-Billancourt, France
| | - Rong Liu
- Bristol Myers Squibb, New York, NY, USA
| | - Yoshiya Tanaka
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | - Munyaradzi Dimairo
- Division of Population Health, Sheffield Centre for Health and Related Research, University of Sheffield, Sheffield, UK
| | - Christopher J Weir
- Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
Yap C, Rekowski J, Ursino M, Solovyeva O, Patel D, Dimairo M, Weir CJ, Chan AW, Jaki T, Mander A, Evans TRJ, Peck R, Hayward KS, Calvert M, Rantell KR, Lee S, Kightley A, Hopewell S, Ashby D, Garrett-Mayer E, Isaacs J, Golub R, Kholmanskikh O, Richards DP, Boix O, Matcham J, Seymour L, Ivy SP, Marshall LV, Hommais A, Liu R, Tanaka Y, Berlin J, Espinasse A, de Bono J. Enhancing quality and impact of early phase dose-finding clinical trial protocols: SPIRIT Dose-finding Extension (SPIRIT-DEFINE) guidance. BMJ 2023; 383:e076386. [PMID: 37863491 DOI: 10.1136/bmj-2023-076386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Affiliation(s)
| | - Jan Rekowski
- Institute of Cancer Research, London SM2 5NG, UK
| | - Moreno Ursino
- ReCAP/F CRIN, INSERM, Paris, France
- Unit of Clinical Epidemiology, University Hospital Centre Robert Debré, Reims, France
- INSERM Centre de Recherche des Cordeliers, Sorbonne University, Paris, France
- Health data and model driven approaches for Knowledge Acquisition team, Centre Inria, Paris, France
| | | | | | - Munyaradzi Dimairo
- Division of Population Health, Sheffield Centre for Health and Related Research, University of Sheffield, Sheffield, UK
| | - Christopher J Weir
- Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - An-Wen Chan
- Department of Medicine, Women's College Research Institute, University of Toronto, Toronto, Canada
| | - Thomas Jaki
- MRC Biostatistics Unit, Cambridge University, Cambridge, UK
- Computational Statistics Group, University of Regensburg, Regensburg, Germany
| | - Adrian Mander
- Centre For Trials Research, Cardiff University, Cardiff, UK
| | - Thomas R Jeffry Evans
- Institute of Cancer Sciences, CR-UK Beatson Institute, University of Glasgow, Glasgow, UK
| | - Richard Peck
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
- Hoffmann-La Roche, Basel, Switzerland
| | - Kathryn S Hayward
- Departments of Physiotherapy, and Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Melanie Calvert
- Centre for Patient Reported Outcomes Research, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK
- National Institute for Health and Care Research Applied Research Collaboration West Midlands, University of Birmingham, Birmingham, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Precision Transplant and Cellular Therapeutics, University of Birmingham, Birmingham, UK
- National Institute for Health and Care Research Birmingham Biomedical Research Centre, NIHR Birmingham Biomedical Research Centre, Institute of Translational Medicine, University Hospital NHS Foundation Trust, Birmingham, UK
| | | | - Shing Lee
- Columbia University Mailman School of Public Health, New York, NY, USA
| | | | - Sally Hopewell
- Oxford Clinical Research Unit, NDORMS, University of Oxford, Oxford, UK
| | - Deborah Ashby
- School of Public Health, Imperial College London, St Mary's Hospital, London, UK
| | - Elizabeth Garrett-Mayer
- Center for Research and Analytics, American Society of Clinical Oncology, Alexandria, VA, USA
| | - John Isaacs
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
| | - Robert Golub
- Department of Medicine, Northwestern University Feinberg School of Medicine, Evanston, IL, USA
| | | | | | | | - James Matcham
- Strategic Consulting, Cytel (Australia), Perth, WA, Australia
| | - Lesley Seymour
- Investigational New Drug Programme, Canadian Cancer Trials Group, Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - S Percy Ivy
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Institute of Health, Bethesda, MD, USA
| | - Lynley V Marshall
- Institute of Cancer Research, London SM2 5NG, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - Antoine Hommais
- Department of Clinical Research, National Cancer Institute, Boulogne-Billancourt, France
| | - Rong Liu
- Bristol Myers Squibb, New York, NY, USA
| | - Yoshiya Tanaka
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | - Johann de Bono
- Institute of Cancer Research, London SM2 5NG, UK
- Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
11
|
Winnand P, Ooms M, Heitzer M, Lammert M, Hölzle F, Modabber A. Real-time detection of bone-invasive oral cancer with laser-induced breakdown spectroscopy: A proof-of-principle study. Oral Oncol 2023; 138:106308. [PMID: 36682186 DOI: 10.1016/j.oraloncology.2023.106308] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/13/2022] [Accepted: 01/08/2023] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Intraoperative definition of resection margin status in bone-invasive oral cancer is a fundamental problem in oncologic surgery due to the lack of rapid bone analysis methods. Laser-induced breakdown spectroscopy (LIBS) provides direct measurement with real-time examination of a minimal tissue sample. This proof-of-principle study aimed to evaluate the possibility of distinguishing tumorous and healthy areas with LIBS. MATERIALS AND METHODS LIBS experiments were executed on native segmental mandibulectomy specimens from 15 patients with bone-invasive oral cancer. Normalized and intensity-matched spectra were compared. Under biological derivation, peak area calculation and principal component analysis (PCA) were applied. The discriminatory power of the PCAs was correlated with the architectural and cytological characteristics of the lasered tumor tissue. Receiver operating characteristics analysis was used to evaluate the performance of LIBS in the real-time detection of bone-invasive cancer. RESULTS Calcium (Ca), which is high in healthy bone, is replaced by potassium (K) and sodium (Na) in bone-invasive cancer. The degree of stromal induction is significantly correlated with the discriminatory power between healthy and tumorous spectra. In this study, LIBS ensured an overall sensitivity of 95.51% and a specificity of 98.64% via the intracellular detection of K and Na. CONCLUSION This study demonstrated robust real-time detection of bone-invasive oral cancer with LIBS, which may lay the foundation for establishing LIBS as a rapid bone analysis method. Further development of a LIBS-guided assessment of bone tumor resection margins might reduce the extent of bony resection without compromising oncologic safety.
Collapse
Affiliation(s)
- Philipp Winnand
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, D-52074 Aachen, North Rhine-Westphalia, Germany.
| | - Mark Ooms
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, D-52074 Aachen, North Rhine-Westphalia, Germany.
| | - Marius Heitzer
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, D-52074 Aachen, North Rhine-Westphalia, Germany.
| | - Matthias Lammert
- Institute of Pathology, University Hospital RWTH Aachen, Pauwelsstraße 30, D-52074 Aachen, North Rhine-Westphalia, Germany.
| | - Frank Hölzle
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, D-52074 Aachen, North Rhine-Westphalia, Germany.
| | - Ali Modabber
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, D-52074 Aachen, North Rhine-Westphalia, Germany.
| |
Collapse
|
12
|
Georgiou-Karistianis N, Corben LA, Reetz K, Adanyeguh IM, Corti M, Deelchand DK, Delatycki MB, Dogan I, Evans R, Farmer J, França MC, Gaetz W, Harding IH, Harris KS, Hersch S, Joules R, Joers JJ, Krishnan ML, Lax M, Lock EF, Lynch D, Mareci T, Muthuhetti Gamage S, Pandolfo M, Papoutsi M, Rezende TJR, Roberts TPL, Rosenberg JT, Romanzetti S, Schulz JB, Schilling T, Schwarz AJ, Subramony S, Yao B, Zicha S, Lenglet C, Henry PG. A natural history study to track brain and spinal cord changes in individuals with Friedreich's ataxia: TRACK-FA study protocol. PLoS One 2022; 17:e0269649. [PMID: 36410013 PMCID: PMC9678384 DOI: 10.1371/journal.pone.0269649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Drug development for neurodegenerative diseases such as Friedreich's ataxia (FRDA) is limited by a lack of validated, sensitive biomarkers of pharmacodynamic response in affected tissue and disease progression. Studies employing neuroimaging measures to track FRDA have thus far been limited by their small sample sizes and limited follow up. TRACK-FA, a longitudinal, multi-site, and multi-modal neuroimaging natural history study, aims to address these shortcomings by enabling better understanding of underlying pathology and identifying sensitive, clinical trial ready, neuroimaging biomarkers for FRDA. METHODS 200 individuals with FRDA and 104 control participants will be recruited across seven international study sites. Inclusion criteria for participants with genetically confirmed FRDA involves, age of disease onset ≤ 25 years, Friedreich's Ataxia Rating Scale (FARS) functional staging score of ≤ 5, and a total modified FARS (mFARS) score of ≤ 65 upon enrolment. The control cohort is matched to the FRDA cohort for age, sex, handedness, and years of education. Participants will be evaluated at three study visits over two years. Each visit comprises of a harmonized multimodal Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) scan of the brain and spinal cord; clinical, cognitive, mood and speech assessments and collection of a blood sample. Primary outcome measures, informed by previous neuroimaging studies, include measures of: spinal cord and brain morphometry, spinal cord and brain microstructure (measured using diffusion MRI), brain iron accumulation (using Quantitative Susceptibility Mapping) and spinal cord biochemistry (using MRS). Secondary and exploratory outcome measures include clinical, cognitive assessments and blood biomarkers. DISCUSSION Prioritising immediate areas of need, TRACK-FA aims to deliver a set of sensitive, clinical trial-ready neuroimaging biomarkers to accelerate drug discovery efforts and better understand disease trajectory. Once validated, these potential pharmacodynamic biomarkers can be used to measure the efficacy of new therapeutics in forestalling disease progression. CLINICAL TRIAL REGISTRATION ClinicalTrails.gov Identifier: NCT04349514.
Collapse
Affiliation(s)
- Nellie Georgiou-Karistianis
- School of Psychological Sciences, The Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia
| | - Louise A. Corben
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Isaac M. Adanyeguh
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Manuela Corti
- Powell Gene Therapy Centre, University of Florida, Gainesville, Florida, United States of America
| | - Dinesh K. Deelchand
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Martin B. Delatycki
- School of Psychological Sciences, The Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Imis Dogan
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Rebecca Evans
- Takeda Pharmaceutical Company Ltd, Cambridge, Massachusetts, United States of America
| | - Jennifer Farmer
- Friedreich’s Ataxia Research Alliance (FARA), Downingtown, Pennsylvania, United States of America
| | - Marcondes C. França
- Department of Neurology, University of Campinas, Campinas, Sao Paulo, Brazil
| | - William Gaetz
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Ian H. Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Karen S. Harris
- School of Psychological Sciences, The Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia
| | - Steven Hersch
- Neurology Business Group, Eisai Inc., Nutley, New Jersey, United States of America
| | | | - James J. Joers
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michelle L. Krishnan
- Translational Medicine, Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | | | - Eric F. Lock
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States of America
| | - David Lynch
- Department of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Thomas Mareci
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| | - Sahan Muthuhetti Gamage
- School of Psychological Sciences, The Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia
| | - Massimo Pandolfo
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | | | | | - Timothy P. L. Roberts
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Jens T. Rosenberg
- McKnight Brain Institute, Department of Neurology, University of Florida, Gainesville, Florida, United States of America
| | - Sandro Romanzetti
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Jörg B. Schulz
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Traci Schilling
- PTC Therapeutics, Inc, South Plainfield, New Jersey, United States of America
| | - Adam J. Schwarz
- Takeda Pharmaceutical Company Ltd, Cambridge, Massachusetts, United States of America
| | - Sub Subramony
- McKnight Brain Institute, Department of Neurology, University of Florida, Gainesville, Florida, United States of America
| | - Bert Yao
- PTC Therapeutics, Inc, South Plainfield, New Jersey, United States of America
| | - Stephen Zicha
- Takeda Pharmaceutical Company Ltd, Cambridge, Massachusetts, United States of America
| | - Christophe Lenglet
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
13
|
Winnand P, Boernsen KO, Bodurov G, Lammert M, Hölzle F, Modabber A. Evaluation of electrolyte element composition in human tissue by laser-induced breakdown spectroscopy (LIBS). Sci Rep 2022; 12:16391. [PMID: 36180727 PMCID: PMC9525258 DOI: 10.1038/s41598-022-20825-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/19/2022] [Indexed: 11/22/2022] Open
Abstract
Laser-induced breakdown spectroscopy (LIBS) enables the direct measurement of cell electrolyte concentrations. The utility of LIBS spectra in biomarker studies is limited because these studies rarely consider basic physical principles. The aim of this study was to test the suitability of LIBS spectra as an analytical method for biomarker assays and to evaluate the composition of electrolyte elements in human biomaterial. LIBS as an analytical method was evaluated by establishing KCl calibration curves to demonstrate linearity, by the correct identification of emission lines with corresponding reference spectra, and by the feasibility to use LIBS in human biomaterial, analyzing striated muscle tissues from the oral regions of two patients. Lorentzian peak fit and peak area calculations resulted in better linearity and reduced shot-to-shot variance. Correct quantitative measurement allowed for differentiation of human biomaterial between patients, and determination of the concentration ratios of main electrolytes within human tissue. The clinical significance of LIBS spectra should be evaluated using peak area rather than peak intensity. LIBS might be a promising tool for analyzing a small group of living cells. Due to linearity, specificity and robustness of the proposed analytical method, LIBS could be a component of future biomarker studies.
Collapse
Affiliation(s)
- Philipp Winnand
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - K Olaf Boernsen
- Advanced Osteotomy Tools AG, Wallstraße 6, 4051, Basel, Switzerland
| | - Georgi Bodurov
- Advanced Osteotomy Tools AG, Wallstraße 6, 4051, Basel, Switzerland
| | - Matthias Lammert
- Institute of Pathology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Frank Hölzle
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Ali Modabber
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
14
|
Zhu H, Tang K, Chen G, Liu Z. Biomarkers in oral immunotherapy. J Zhejiang Univ Sci B 2022; 23:705-731. [PMID: 36111569 PMCID: PMC9483607 DOI: 10.1631/jzus.b2200047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Food allergy (FA) is a global health problem that affects a large population, and thus effective treatment is highly desirable. Oral immunotherapy (OIT) has been showing reasonable efficacy and favorable safety in most FA subjects. Dependable biomarkers are needed for treatment assessment and outcome prediction during OIT. Several immunological indicators have been used as biomarkers in OIT, such as skin prick tests, basophil and mast cell reactivity, T cell and B cell responses, allergen-specific antibody levels, and cytokines. Other novel indicators also could be potential biomarkers. In this review, we discuss and assess the application of various immunological indicators as biomarkers for OIT.
Collapse
Affiliation(s)
- Haitao Zhu
- Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital, Xi'an 710061, China
| | - Kaifa Tang
- Department of Urology, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Guoqiang Chen
- Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital, Xi'an 710061, China
| | - Zhongwei Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an 710068, China.
| |
Collapse
|
15
|
Mishkin GE, Kohn EC. Biomarker development: bedside to bench. Clin Cancer Res 2022; 28:2722-2724. [PMID: 35481871 DOI: 10.1158/1078-0432.ccr-22-0750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022]
Abstract
This commentary complements the report from Nixon and colleagues by addressing the critical definitions, assay and analytical quality control and interpretation, and resources available to advance similar fit-for-purpose biomarker development.
Collapse
Affiliation(s)
| | - Elise C Kohn
- National Cancer Institute, Rockville, MD, United States
| |
Collapse
|
16
|
Ishikawa R, Saito K, Matsumura T, Arai K, Yamauchi S, Goda R, Tachiki H, Kawabata M, Nitta SI, Nagao A, Suga T, Uchiyama H, Nakai K, Asahina K, Yamaoka M, Saito Y. A multilaboratory validation study of LC/MS biomarker assays for three lysophosphatidylcholines. Bioanalysis 2021; 13:1533-1546. [PMID: 34696608 DOI: 10.4155/bio-2021-0150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
Aim: Although the fit-for-purpose approach has been proposed for validation procedures and acceptance criteria for biomarker assays, practical biomarker assays to facilitate clinical application and regulatory documents on biomarker assays remain limited. Materials & methods: We assigned six independent laboratories and selected three lysophosphatidylcholines (LPCs): LPC(16:0), LPC(18:0) and LPC(18:1) as model biomarkers. Using LC-MS, the following key validation parameters were evaluated: calibration curve, carryover, parallelism, precision and relative accuracy and these values were similar among all laboratories. Further, we determined LPC levels in six lots of rat plasma at unknown concentrations and compared them among the laboratories. Conclusion: Our multilaboratory validation and reproducibility data are useful for the development of future biomarker assay validation procedures, as well as regulatory documents.
Collapse
Affiliation(s)
- Rika Ishikawa
- Division of Medical Safety Science, National Institute of Health Sciences, Kanagawa, 210-9501, Japan
| | - Kosuke Saito
- Division of Medical Safety Science, National Institute of Health Sciences, Kanagawa, 210-9501, Japan
| | | | - Koji Arai
- LSI Medience Corporation, Tokyo, 101-8517, Japan
| | | | - Ryoya Goda
- Daiichi Sankyo Company, Ltd, Tokyo, 140-8710, Japan
| | | | | | | | | | | | | | - Keiko Nakai
- LSI Medience Corporation, Tokyo, 101-8517, Japan
| | | | | | - Yoshiro Saito
- Division of Medical Safety Science, National Institute of Health Sciences, Kanagawa, 210-9501, Japan
| |
Collapse
|
17
|
Batis N, Brooks JM, Payne K, Sharma N, Nankivell P, Mehanna H. Lack of predictive tools for conventional and targeted cancer therapy: Barriers to biomarker development and clinical translation. Adv Drug Deliv Rev 2021; 176:113854. [PMID: 34192550 PMCID: PMC8448142 DOI: 10.1016/j.addr.2021.113854] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/30/2022]
Abstract
Predictive tools, utilising biomarkers, aim to objectively assessthe potentialresponse toa particular clinical intervention in order to direct treatment.Conventional cancer therapy remains poorly served by predictive biomarkers, despite being the mainstay of treatment for most patients. In contrast, targeted therapy benefits from a clearly defined protein target for potential biomarker assessment. We discuss potential data sources of predictive biomarkers for conventional and targeted therapy, including patient clinical data andmulti-omicbiomarkers (genomic, transcriptomic and protein expression).Key examples, either clinically adopted or demonstrating promise for clinical translation, are highlighted. Following this, we provide an outline of potential barriers to predictive biomarker development; broadly discussing themes of approaches to translational research and study/trial design, and the impact of cellular and molecular tumor heterogeneity. Future avenues of research are also highlighted.
Collapse
Affiliation(s)
- Nikolaos Batis
- Institute of Head and Neck Studies and Education (InHANSE), Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.
| | - Jill M Brooks
- Institute of Head and Neck Studies and Education (InHANSE), Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Karl Payne
- Institute of Head and Neck Studies and Education (InHANSE), Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Neil Sharma
- Institute of Head and Neck Studies and Education (InHANSE), Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; Department of Head and Neck Surgery, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Paul Nankivell
- Institute of Head and Neck Studies and Education (InHANSE), Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; Department of Head and Neck Surgery, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Hisham Mehanna
- Institute of Head and Neck Studies and Education (InHANSE), Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; Department of Head and Neck Surgery, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
18
|
Varatharajah Y, Berry B, Joseph B, Balzekas I, Pal Attia T, Kremen V, Brinkmann B, Iyer R, Worrell G. Characterizing the electrophysiological abnormalities in visually reviewed normal EEGs of drug-resistant focal epilepsy patients. Brain Commun 2021; 3:fcab102. [PMID: 34131643 PMCID: PMC8196245 DOI: 10.1093/braincomms/fcab102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/28/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Routine scalp EEG is essential in the clinical diagnosis and management of epilepsy. However, a normal scalp EEG (based on expert visual review) recorded from a patient with epilepsy can cause delays in diagnosis and clinical care delivery. Here, we investigated whether normal EEGs might contain subtle electrophysiological clues of epilepsy. Specifically, we investigated (i) whether there are indicators of abnormal brain electrophysiology in normal EEGs of epilepsy patients, and (ii) whether such abnormalities are modulated by the side of the brain generating seizures in focal epilepsy. We analysed awake scalp EEG recordings of age-matched groups of 144 healthy individuals and 48 individuals with drug-resistant focal epilepsy who had normal scalp EEGs. After preprocessing, using a bipolar montage of eight channels, we extracted the fraction of spectral power in the alpha band (8-13 Hz) relative to a wide band of 0.5-40 Hz within 10-s windows. We analysed the extracted features for (i) the extent to which people with drug-resistant focal epilepsy differed from healthy subjects, and (ii) whether differences within the drug-resistant focal epilepsy patients were related to the hemisphere generating seizures. We then used those differences to classify whether an EEG is likely to have been recorded from a person with drug-resistant focal epilepsy, and if so, the epileptogenic hemisphere. Furthermore, we tested the significance of these differences while controlling for confounders, such as acquisition system, age and medications. We found that the fraction of alpha power is generally reduced (i) in drug-resistant focal epilepsy compared to healthy controls, and (ii) in right-handed drug-resistant focal epilepsy subjects with left hemispheric seizures compared to those with right hemispheric seizures, and that the differences are most prominent in the frontal and temporal regions. The fraction of alpha power yielded area under curve values of 0.83 in distinguishing drug-resistant focal epilepsy from healthy and 0.77 in identifying the epileptic hemisphere in drug-resistant focal epilepsy patients. Furthermore, our results suggest that the differences in alpha power are greater when compared with differences attributable to acquisition system differences, age and medications. Our findings support that EEG-based measures of normal brain function, such as the normalized spectral power of alpha activity, may help identify patients with epilepsy even when an EEG does not contain any epileptiform activity, recorded seizures or other abnormalities. Although alpha abnormalities are unlikely to be disease-specific, we propose that such abnormalities may provide a higher pre-test probability for epilepsy when an individual being screened for epilepsy has a normal EEG on visual assessment.
Collapse
Affiliation(s)
- Yogatheesan Varatharajah
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA.,Mayo Systems Electrophysiology Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA.,Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801, USA
| | - Brent Berry
- Mayo Systems Electrophysiology Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Boney Joseph
- Mayo Systems Electrophysiology Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Irena Balzekas
- Mayo Systems Electrophysiology Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Tal Pal Attia
- Mayo Systems Electrophysiology Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Vaclav Kremen
- Mayo Systems Electrophysiology Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA.,Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, 160 00 Prague 6, Czech Republic
| | - Benjamin Brinkmann
- Mayo Systems Electrophysiology Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ravishankar Iyer
- Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801, USA
| | - Gregory Worrell
- Mayo Systems Electrophysiology Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
19
|
Vissers MFJM, Heuberger JAAC, Groeneveld GJ. Targeting for Success: Demonstrating Proof-of-Concept with Mechanistic Early Phase Clinical Pharmacology Studies for Disease-Modification in Neurodegenerative Disorders. Int J Mol Sci 2021; 22:1615. [PMID: 33562713 PMCID: PMC7915613 DOI: 10.3390/ijms22041615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/23/2022] Open
Abstract
The clinical failure rate for disease-modifying treatments (DMTs) that slow or stop disease progression has been nearly 100% for the major neurodegenerative disorders (NDDs), with many compounds failing in expensive and time-consuming phase 2 and 3 trials for lack of efficacy. Here, we critically review the use of pharmacological and mechanistic biomarkers in early phase clinical trials of DMTs in NDDs, and propose a roadmap for providing early proof-of-concept to increase R&D productivity in this field of high unmet medical need. A literature search was performed on published early phase clinical trials aimed at the evaluation of NDD DMT compounds using MESH terms in PubMed. Publications were selected that reported an early phase clinical trial with NDD DMT compounds between 2010 and November 2020. Attention was given to the reported use of pharmacodynamic (mechanistic and physiological response) biomarkers. A total of 121 early phase clinical trials were identified, of which 89 trials (74%) incorporated one or multiple pharmacodynamic biomarkers. However, only 65 trials (54%) used mechanistic (target occupancy or activation) biomarkers to demonstrate target engagement in humans. The most important categories of early phase mechanistic and response biomarkers are discussed and a roadmap for incorporation of a robust biomarker strategy for early phase NDD DMT clinical trials is proposed. As our understanding of NDDs is improving, there is a rise in potentially disease-modifying treatments being brought to the clinic. Further increasing the rational use of mechanistic biomarkers in early phase trials for these (targeted) therapies can increase R&D productivity with a quick win/fast fail approach in an area that has seen a nearly 100% failure rate to date.
Collapse
Affiliation(s)
- Maurits F. J. M. Vissers
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL Leiden, The Netherlands; (J.A.A.C.H.); (G.J.G.)
- Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Jules A. A. C. Heuberger
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL Leiden, The Netherlands; (J.A.A.C.H.); (G.J.G.)
| | - Geert Jan Groeneveld
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL Leiden, The Netherlands; (J.A.A.C.H.); (G.J.G.)
- Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
20
|
Tonry C, Finn S, Armstrong J, Pennington SR. Clinical proteomics for prostate cancer: understanding prostate cancer pathology and protein biomarkers for improved disease management. Clin Proteomics 2020; 17:41. [PMID: 33292167 PMCID: PMC7678104 DOI: 10.1186/s12014-020-09305-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Following the introduction of routine Prostate Specific Antigen (PSA) screening in the early 1990's, Prostate Cancer (PCa) is often detected at an early stage. There are also a growing number of treatment options available and so the associated mortality rate is generally low. However, PCa is an extremely complex and heterogenous disease and many patients suffer disease recurrence following initial therapy. Disease recurrence commonly results in metastasis and metastatic PCa has an average survival rate of just 3-5 years. A significant problem in the clinical management of PCa is being able to differentiate between patients who will respond to standard therapies and those who may benefit from more aggressive intervention at an earlier stage. It is also acknowledged that for many men the disease is not life threatenting. Hence, there is a growing desire to identify patients who can be spared the significant side effects associated with PCa treatment until such time (if ever) their disease progresses to the point where treatment is required. To these important clinical needs, current biomarkers and clinical methods for patient stratification and personlised treatment are insufficient. This review provides a comprehensive overview of the complexities of PCa pathology and disease management. In this context it is possible to review current biomarkers and proteomic technologies that will support development of biomarker-driven decision tools to meet current important clinical needs. With such an in-depth understanding of disease pathology, the development of novel clinical biomarkers can proceed in an efficient and effective manner, such that they have a better chance of improving patient outcomes.
Collapse
Affiliation(s)
- Claire Tonry
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Stephen Finn
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin 8, Ireland
| | | | | |
Collapse
|
21
|
Conklin LS, Hoffman EP, van den Anker J. Developmental Pharmacodynamics and Modeling in Pediatric Drug Development. J Clin Pharmacol 2020; 59 Suppl 1:S87-S94. [PMID: 31502687 DOI: 10.1002/jcph.1482] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022]
Abstract
Challenges in pediatric drug development include small patient numbers, limited outcomes research, ethical barriers, and sparse biosamples. Increasingly, pediatric drug development is focusing on extrapolation: leveraging knowledge about adult disease and drug responses to inform projections of drug and clinical trial performance in pediatric subpopulations. Pharmacokinetic-pharmacodynamic (PK-PD) modeling and extrapolation aim to reduce the numbers of patients and data points needed to establish efficacy. Planning for PK-PD and biomarker studies should begin early in the adult drug development program. Extrapolation relies on the assumption that both the underlying disease and the mechanism of action of the drug used to treat that disease are similar in adults and pediatric subpopulations. Clearly, developmental changes in PK and PD need to be considered to enhance the quality of PK-PD modeling and, therefore, increase the success of extrapolation. This article focuses on the influence of differences in PD between adults and pediatric subpopulations that are highly relevant for the use of extrapolation.
Collapse
Affiliation(s)
- Laurie S Conklin
- Division of Gastroenterology, Hepatology, and Nutrition, Children's National Health System, Washington, DC, USA.,ReveraGen BioPharma, Rockville, MD, USA
| | - Eric P Hoffman
- ReveraGen BioPharma, Rockville, MD, USA.,Binghamton University-SUNY, School of Pharmacy and Pharmaceutical Sciences, Binghamton, NY, USA
| | - John van den Anker
- ReveraGen BioPharma, Rockville, MD, USA.,Division of Clinical Pharmacology, Children's National Health System, Washington, DC, USA
| |
Collapse
|
22
|
Tabrizi SJ, Flower MD, Ross CA, Wild EJ. Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat Rev Neurol 2020; 16:529-546. [PMID: 32796930 DOI: 10.1038/s41582-020-0389-4] [Citation(s) in RCA: 294] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
Huntington disease (HD) is a neurodegenerative disease caused by CAG repeat expansion in the huntingtin gene (HTT) and involves a complex web of pathogenic mechanisms. Mutant HTT (mHTT) disrupts transcription, interferes with immune and mitochondrial function, and is aberrantly modified post-translationally. Evidence suggests that the mHTT RNA is toxic, and at the DNA level, somatic CAG repeat expansion in vulnerable cells influences the disease course. Genome-wide association studies have identified DNA repair pathways as modifiers of somatic instability and disease course in HD and other repeat expansion diseases. In animal models of HD, nucleocytoplasmic transport is disrupted and its restoration is neuroprotective. Novel cerebrospinal fluid (CSF) and plasma biomarkers are among the earliest detectable changes in individuals with premanifest HD and have the sensitivity to detect therapeutic benefit. Therapeutically, the first human trial of an HTT-lowering antisense oligonucleotide successfully, and safely, reduced the CSF concentration of mHTT in individuals with HD. A larger trial, powered to detect clinical efficacy, is underway, along with trials of other HTT-lowering approaches. In this Review, we discuss new insights into the molecular pathogenesis of HD and future therapeutic strategies, including the modulation of DNA repair and targeting the DNA mutation itself.
Collapse
Affiliation(s)
- Sarah J Tabrizi
- Huntington's Disease Centre, University College London, London, UK. .,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK. .,UK Dementia Research Institute, University College London, London, UK.
| | - Michael D Flower
- Huntington's Disease Centre, University College London, London, UK.,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK.,UK Dementia Research Institute, University College London, London, UK
| | - Christopher A Ross
- Departments of Neurology, Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Edward J Wild
- Huntington's Disease Centre, University College London, London, UK.,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
23
|
Yee LM, McShane LM, Freidlin B, Mooney MM, Korn EL. Biostatistical and Logistical Considerations in the Development of Basket and Umbrella Clinical Trials. Cancer J 2020; 25:254-263. [PMID: 31335389 PMCID: PMC6658126 DOI: 10.1097/ppo.0000000000000384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oncology clinical trials are undergoing transformation to evaluate targeted therapies addressing a wider variety of biologically defined cancer subgroups. Multiarm basket and umbrella trials conducted under master protocols have become more prominent mechanisms for the clinical evaluation of promising new biologically driven anticancer therapies that are integral to precision oncology medicine. These new trial designs permit efficient clinical evaluation of multiple therapies in a variety of histologically and biologically defined cancers. These complex trials require extensive planning and attention to many factors, including choice of biomarker assay platform, mechanism for processing clinicopathologic and biomarker data to assign patients to substudies, and statistical design, monitoring, and analysis of substudies. Trial teams have expanded to include expertise in the interface between biology, clinical oncology, bioinformatics, and statistics. Strategies for the design, conduct, and analysis of these complex trials will continue to evolve to meet new challenges and opportunities in precision oncology medicine.
Collapse
Affiliation(s)
- Laura M. Yee
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Lisa M. McShane
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Boris Freidlin
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Margaret M. Mooney
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Edward L. Korn
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| |
Collapse
|
24
|
|
25
|
Johnson D, Hughes D, Pirmohamed M, Jorgensen A. Evidence to Support Inclusion of Pharmacogenetic Biomarkers in Randomised Controlled Trials. J Pers Med 2019; 9:E42. [PMID: 31480618 PMCID: PMC6789450 DOI: 10.3390/jpm9030042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 01/01/2023] Open
Abstract
Pharmacogenetics and biomarkers are becoming normalised as important technologies to improve drug efficacy rates, reduce the incidence of adverse drug reactions, and make informed choices for targeted therapies. However, their wider clinical implementation has been limited by a lack of robust evidence. Suitable evidence is required before a biomarker's clinical use, and also before its use in a clinical trial. We have undertaken a review of five pharmacogenetic biomarker-guided randomised controlled trials (RCTs) and evaluated the evidence used by these trials to justify biomarker inclusion. We assessed and quantified the evidence cited in published rationale papers, or where these were not available, obtained protocols from trial authors. Very different levels of evidence were provided by the trials. We used these observations to write recommendations for future justifications of biomarker use in RCTs and encourage regulatory authorities to write clear guidelines.
Collapse
Affiliation(s)
- Danielle Johnson
- Institute of Translational Medicine, Department of Biostatistics, University of Liverpool, Waterhouse Building, 1-5 Brownlow Street, Liverpool L69 3GL, UK.
| | - Dyfrig Hughes
- Centre for Health Economics and Medicines Evaluation, Bangor University, Ardudwy, Normal Site, Bangor LL57 2PZ, UK
| | - Munir Pirmohamed
- MRC Centre for Drug Safety Science and Wolfson Centre for Personalised Medicine, Institute of Translational Medicine, Waterhouse Building, 1-5 Brownlow Street, Liverpool L69 3GL, UK
| | - Andrea Jorgensen
- Institute of Translational Medicine, Department of Biostatistics, University of Liverpool, Waterhouse Building, 1-5 Brownlow Street, Liverpool L69 3GL, UK
| |
Collapse
|
26
|
Verderio P, Pizzamiglio S, Ciniselli CM. Methodological and statistical issues in developing an External Quality Assessment scheme in laboratory medicine: Focus on biomarker research. N Biotechnol 2019; 52:54-59. [PMID: 31059865 DOI: 10.1016/j.nbt.2019.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 11/16/2022]
Abstract
External Quality Assessment (EQA) schemes are well-established tools with which to evaluate, monitor and improve the output quality of clinical laboratories, recognising that high quality laboratory medicine is essential for patient care. EQA programs involve the testing of multiple laboratories and the statistical comparison of their results, according to a multistep workflow. New clinical laboratory activities, such as biomarker research, require new EQA schemes. Critical elements in designing EQA programs are choosing the statistical methods and defining reference values and control limits. This article summarizes the key features of an EQA scheme, including designing the study, identifying reference values and control limits for qualitative and quantitative data, and graphically reporting laboratory performance statistics. These steps are illustrated with examples taken from the authors' experience in national and international quality assessment schemes for biomarker research.
Collapse
Affiliation(s)
- Paolo Verderio
- Bioinformatics and Biostatistics Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Sara Pizzamiglio
- Bioinformatics and Biostatistics Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Maura Ciniselli
- Bioinformatics and Biostatistics Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
27
|
Welcome to the 11th volume of Bioanalysis. Bioanalysis 2019; 11:1-5. [DOI: 10.4155/bio-2018-0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
28
|
|