1
|
Ban J, Seo BK, Yu Y, Kim M, Choe J, Park JH, Park SY, Lee DK, Kim SH. Nonclinical Pharmacokinetics Study of OLX702A-075-16, N-Acetylgalactosamine Conjugated Asymmetric Small Interfering RNA (GalNAc-asiRNA). Drug Metab Dispos 2024; 52:1262-1270. [PMID: 39168524 DOI: 10.1124/dmd.124.001805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
In this study, the nonclinical pharmacokinetics of OLX702A-075-16, an RNA interference therapeutic currently in development, were investigated. OLX702A-075-16 is a novel N-acetylgalactosamine conjugated asymmetric small-interfering RNA (GalNAc-asiRNA) used for the treatment of an undisclosed liver disease. Its unique 16/21-mer asymmetric structure reduces nonspecific off-target effects without compromising efficacy. We investigated the plasma concentration, tissue distribution, metabolism, and renal excretion of OLX702A-075-16 following a subcutaneous administration in mice and rats. For bioanalysis, high-performance liquid chromatography with fluorescence detection was used. The results showed rapid clearance from plasma (0.5 to 1.5 hours of half-life) and predominant distribution to the liver and/or kidney. Less than 1% of the liver concentration of OLX702A-075-16 was detected in the other tissues. Metabolite profiling using liquid chromatography coupled with high-resolution mass spectrometry revealed that the intact duplex OLX702A-075-16 was the major compound in plasma. The GalNAc moiety was predominantly metabolized from the sense strand in the liver, with the unconjugated sense strand of OLX702A-075-16 accounting for more than 95% of the total exposure in the rat liver. Meanwhile, the antisense strand was metabolized by the sequential loss of nucleotides from the 3'-terminus by exonuclease, with the rat liver samples yielding the most diverse truncated forms of metabolites. Urinary excretion over 96 hours was less than 1% of the administered dose in rats. High plasma protein binding of OLX702A-075-16 likely inhibited its clearance through renal filtration. SIGNIFICANCE STATEMENT: This study presents the first comprehensive characterization of the in vivo pharmacokinetics of GalNAc-asiRNA. The pharmacokinetic insights gained from this research will aid in understanding toxicology and efficacy, optimizing delivery platforms, and improving the predictive power of preclinical species data for human applications.
Collapse
Affiliation(s)
- Jihye Ban
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - Bong Kyo Seo
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - Yunmi Yu
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - Minkyeong Kim
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - Jeongyong Choe
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - June Hyun Park
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - Shin-Young Park
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - Dong-Ki Lee
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - So Hee Kim
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| |
Collapse
|
2
|
Zhang X, Sha C, Zhang W, Zhao F, Zhu M, Leng G, Liu W. Development and validation of an HILIC/MS/MS method for determination of nusinersen in rabbit plasma. Heliyon 2024; 10:e31213. [PMID: 38799737 PMCID: PMC11126830 DOI: 10.1016/j.heliyon.2024.e31213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
A hydrophilic interaction liquid chromatography tandem mass spectrometry (HILIC/MS/MS) method was developed and validated for the quantitative analysis of the fully phosphorothioate modified oligonucleotide nusinersen. HILIC/MS/MS method is more robust and compatible with mass spectrometry than ion pair reversed-phase liquid chromatography-tandem mass spectrometry (IP-RP-LC/MS/MS). Various types and concentrations of additives and different pH of mobile phase affected the mass spectrometry response, chromatographic peak shape and retention of nusinersen. The optimized extraction method of nusinersen employs hydrophilic-lipophilic balance solid phase extraction, with a recovery of up to 80 %. Chromatographic quantification was performed using a gradient system on an amide column and the mobile phase consisted of ammonium acetate, acetonitrile and water in a certain proportion. The fully phosphorothioate modified nusinersen can obtain a high mass spectrometry response by providing greater peak symmetry and high ionization efficiency in a high-pH mobile phase. Moreover, the significant carry over interference was observed at the pH 6.3 of the mobile phase. Adjusting the pH value up to 10, and the carry over interference disappeared. The lower limit of quantitation of this developed HILIC/MS/MS assay was 30.0 ng/mL and the method was systematic methodology validated. This HILIC/MS/MS method provides an attractive and robust alternative for the quantitative analysis of nusinersen and was applied in the pharmacokinetic study of nusinersen in rabbits.
Collapse
Affiliation(s)
- Xiao Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Yantai University, Yantai, 264005, China
| | - Chunjie Sha
- Department of Traditional Chinese Medicine, Shandong College of Traditional Chinese Medicine, Yantai, China
| | - Wei Zhang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Luye Pharmaceutical Group, Yantai, China
| | - Fengjuan Zhao
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Luye Pharmaceutical Group, Yantai, China
| | - Mingli Zhu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Luye Pharmaceutical Group, Yantai, China
| | - Guangyi Leng
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Luye Pharmaceutical Group, Yantai, China
| | - Wanhui Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Yantai University, Yantai, 264005, China
| |
Collapse
|
3
|
Zhang X, Sha C, Zhang W, Zhao F, Zhu M, Leng G, Liu W. Development, validation and application of an ion-pair reversed-phase liquid chromatography-tandem mass spectrometry method for the quantification of nusinersen. Bioanalysis 2024; 16:305-317. [PMID: 38334103 DOI: 10.4155/bio-2023-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Background: The fully phosphorothioate-modified oligonucleotide (OGN) nusinersen has low ionization efficiency in the negative ion mode, resulting in a low mass spectrometry response. There have been no relevant reports on developing a LC-MS method for the determination of nusinersen by optimizing mobile phase composition. Materials & methods: Mobile phase additives comprised of 15 mM triethylamine/25 mM 1,1,1,3,3,3-hexafluoro-2-propanol with a pH of 9.6. Nusinersen was extracted from plasma using Oasis® HLB solid-phase extraction (Waters, MA, USA). Results & conclusion: By adjusting the pH of the mobile phase to 9.6 by optimizing the type and concentration of ion-pair reagents, a high mass spectrometry response was obtained. The developed method was applied to nusinersen and met the requirements for the pharmacokinetic study of nusinersen in rabbits.
Collapse
Affiliation(s)
- Xiao Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Yantai University, Yantai, 264005, China
| | - Chunjie Sha
- Department of Traditional Chinese Medicine, Shandong College of Traditional Chinese Medicine, Yantai, China
| | - Wei Zhang
- National Key Laboratory of Advanced Drug Delivery & Release Systems, Luye Pharmaceutical Group, Yantai, China
| | - Fengjuan Zhao
- National Key Laboratory of Advanced Drug Delivery & Release Systems, Luye Pharmaceutical Group, Yantai, China
| | - Mingli Zhu
- National Key Laboratory of Advanced Drug Delivery & Release Systems, Luye Pharmaceutical Group, Yantai, China
| | - Guangyi Leng
- National Key Laboratory of Advanced Drug Delivery & Release Systems, Luye Pharmaceutical Group, Yantai, China
| | - Wanhui Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Yantai University, Yantai, 264005, China
| |
Collapse
|
4
|
Turski MK, Albertolle ME. Utilizing droplet digital polymerase chain reaction for siRNA quantitation in rodent plasma and tissue via stem-loop reverse transcription. Bioanalysis 2024; 16:375-388. [PMID: 38380639 DOI: 10.4155/bio-2023-0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Background: siRNA is a promising therapeutic modality highlighted by several US FDA approvals since 2018, with many more oligonucleotide assets in clinical development. To support siRNA discovery and development, robust and sensitive quantitative platforms for bioanalysis must be established to assess pharmacokinetic/pharmacodynamic relationships and toxicology. Droplet digital PCR offers improved sensitivity and throughput, as well as reduced susceptibility to matrix effects, compared with other analytical platforms. Methodology: The authors developed a stem-loop reverse transcription droplet digital PCR method to measure siRNA in mouse plasma and liver extract using bioanalytical method qualification guidelines. Conclusion: This newly developed assay has been demonstrated to be a superior alternative to other platforms, with the added benefit of greater sensitivity, with dynamic range from 390 to 400,000 copies/reaction and readiness for FDA investigational new drug-enabling applications.
Collapse
Affiliation(s)
- Megan K Turski
- Global Drug Metabolism. Pharmacokinetics & Modeling, Takeda Development Center Americas, San Diego, CA, USA
| | - Matthew E Albertolle
- Global Drug Metabolism. Pharmacokinetics & Modeling, Takeda Development Center Americas, San Diego, CA, USA
| |
Collapse
|
5
|
Ji Y, Guo Z, Yan M, Chu L, Meng M, Chu Y, Yu H, Wang L. Metabolite identification and quantitation of RBD1016 siRNA: a direct comparison of hybridization-based LC-FD and LC-HRAM assays. Bioanalysis 2024; 16:91-105. [PMID: 37965863 DOI: 10.4155/bio-2023-0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Aim: RBD1016 is an N-acetylgalactosamine-conjugated siRNA drug currently in a phase II trial for treatment of chronic hepatitis B virus. To evaluate its absorption, distribution, metabolism and excretion (ADME) and pharmacokinetic/pharmacodynamic (PK/PD) properties, two LC-based bioanalytical methods, LC-high-resolution/accuracy MS and LC-fluorescence detection, were developed and qualified. Materials & methods: The LC-high-resolution/accuracy MS method was used for metabolite identification and simultaneous quantitation of the antisense and sense strands as well as their respective metabolites. The LC-fluorescence detection assay was primarily used for analyzing the antisense strand and its metabolites in low-concentration plasma samples. The two methods were successfully bridged by analyzing the same sets of study samples. Results & conclusion: Both methods were found to have excellent accuracy/precision, specificity and reproducibility to support ADME and PK/PD studies of RBD1016 siRNA.
Collapse
Affiliation(s)
- Yuhuan Ji
- Chongqing Denali Medpharma, Inc., Chongqing, 400722, China
| | - Zhaoxu Guo
- Suzhou Ribo Life Science, Co. Ltd, Suzhou, Jiangsu, 215347, China
| | - Min Yan
- Chongqing Denali Medpharma, Inc., Chongqing, 400722, China
| | - Limin Chu
- Chongqing Denali Medpharma, Inc., Chongqing, 400722, China
| | - Min Meng
- Chongqing Denali Medpharma, Inc., Chongqing, 400722, China
| | - Yantao Chu
- Suzhou Ribo Life Science, Co. Ltd, Suzhou, Jiangsu, 215347, China
| | - Hong Yu
- Suzhou Ribo Life Science, Co. Ltd, Suzhou, Jiangsu, 215347, China
| | - Laixin Wang
- Chongqing Denali Medpharma, Inc., Chongqing, 400722, China
| |
Collapse
|
6
|
LBAs vs chromatographic platforms for oligonucleotide quantification. Bioanalysis 2023; 15:53-55. [PMID: 36876831 DOI: 10.4155/bio-2023-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
|
7
|
Toshima A, Shiraishi Y, Shinmi D, Kagawa Y, Enokizono J. Comprehensive Analyses of the Intracellular and in Vivo Disposition of Fab- Small Interfering RNA Conjugate to Identify Key Issues to Improve Its in Vivo Activity. Drug Metab Dispos 2023; 51:338-347. [PMID: 36460478 DOI: 10.1124/dmd.122.001098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
Comprehensive analyses of intracellular disposition and in vivo pharmacokinetics were performed for small interfering RNA (siRNA) conjugated with the Fab fragment of panitumumab, a fully humanized monoclonal antibody against epidermal growth factor receptor (EGFR). The Fab-siRNA conjugate was internalized into EGFR-expressing cancer cells in an antigen-dependent manner. Intracellular disposition was quantitatively evaluated using fluorescent-labeled panitumumab and confocal microscopy. The majority of internalized panitumumab was suggested to be transferred into lysosomes. In vivo pharmacokinetics were evaluated in EGFR-expressing tumor-bearing mice. Intact Fab-siRNA was measured by immunoprecipitation using anti-Fab antibody followed by quantitative polymerase chain reaction. The Fab portion was measured by a ligand binding assay. Intact Fab-siRNA concentrations rapidly decreased in the plasma and tumor, although the Fab portion concentration remained high, suggesting extensive degradation in the linker-siRNA portion. After incubation of Fab-siRNA in mouse plasma, samples were digested with proteinase K, and extracted siRNA tagged with Fab-derived peptide was subjected to an ion-pair reversed-phase liquid chromatography with mass spectrometry analysis. Results suggested that hydrolysis from the 3' end of the antisense strand of siRNA is the major metabolizing pathway. Based on these findings, endosomal escape and stability in lysosomes, blood, and tumor are key factors to improve to achieve efficient target gene knockdown in tumors, and stabilizing the 3' end of the antisense strand was suggested to be most efficient. Our approaches clearly identified the key issues of Fab-siRNA from a pharmacokinetics aspect, which will be useful for improving the in vivo activity of siRNA conjugated with not only Fab but also other immunoproteins. SIGNIFICANCE STATEMENT: The intracellular and in vivo disposition of Fab-small interfering RNA (siRNA) conjugate was comprehensively investigated using various approaches, including newly developed analytical methods. This study clearly shows that improvements in siRNA stability in lysosomes, blood, and tumor are needed for target gene knockdown in tumors. The major metabolic pathway of Fab-siRNA is 3' exonuclease degradation, suggesting that optimization of the conjugation site to Fab might help improve stability.
Collapse
Affiliation(s)
- Asami Toshima
- Pharmacokinetics Research Laboratories, Translational Research Unit, R&D Division (A.T.), Modality Research Laboratories 1, Research Unit, R&D Division (Y.S.), Molecular Analysis Center, Research Unit, R&D Division (D.S.), and Research Management Office, Research Unit, R&D Division (J.E.), Kyowa Kirin Co., Ltd., Tokyo, Japan; and Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (Y.K.)
| | - Yasuhisa Shiraishi
- Pharmacokinetics Research Laboratories, Translational Research Unit, R&D Division (A.T.), Modality Research Laboratories 1, Research Unit, R&D Division (Y.S.), Molecular Analysis Center, Research Unit, R&D Division (D.S.), and Research Management Office, Research Unit, R&D Division (J.E.), Kyowa Kirin Co., Ltd., Tokyo, Japan; and Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (Y.K.)
| | - Daisuke Shinmi
- Pharmacokinetics Research Laboratories, Translational Research Unit, R&D Division (A.T.), Modality Research Laboratories 1, Research Unit, R&D Division (Y.S.), Molecular Analysis Center, Research Unit, R&D Division (D.S.), and Research Management Office, Research Unit, R&D Division (J.E.), Kyowa Kirin Co., Ltd., Tokyo, Japan; and Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (Y.K.)
| | - Yoshiyuki Kagawa
- Pharmacokinetics Research Laboratories, Translational Research Unit, R&D Division (A.T.), Modality Research Laboratories 1, Research Unit, R&D Division (Y.S.), Molecular Analysis Center, Research Unit, R&D Division (D.S.), and Research Management Office, Research Unit, R&D Division (J.E.), Kyowa Kirin Co., Ltd., Tokyo, Japan; and Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (Y.K.)
| | - Junichi Enokizono
- Pharmacokinetics Research Laboratories, Translational Research Unit, R&D Division (A.T.), Modality Research Laboratories 1, Research Unit, R&D Division (Y.S.), Molecular Analysis Center, Research Unit, R&D Division (D.S.), and Research Management Office, Research Unit, R&D Division (J.E.), Kyowa Kirin Co., Ltd., Tokyo, Japan; and Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan (Y.K.)
| |
Collapse
|
8
|
Bioanalysis of Oligonucleotide by LC-MS: Effects of Ion Pairing Regents and Recent Advances in Ion-Pairing-Free Analytical Strategies. Int J Mol Sci 2022; 23:ijms232415474. [PMID: 36555119 PMCID: PMC9779676 DOI: 10.3390/ijms232415474] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 12/12/2022] Open
Abstract
Oligonucleotides (OGNs) are relatively new modalities that offer unique opportunities to expand the therapeutic targets. Reliable and high-throughput bioanalytical methods are pivotal for preclinical and clinical investigations of therapeutic OGNs. Liquid chromatography-mass spectrometry (LC-MS) is now evolving into being the method of choice for the bioanalysis of OGNs. Ion paring reversed-phase liquid chromatography (IP-RPLC) has been widely used in sample preparation and LC-MS analysis of OGNs; however, there are technical issues associated with these methods. IP-free methods, such as hydrophilic interaction liquid chromatography (HILIC) and anion-exchange techniques, have emerged as promising approaches for the bioanalysis of OGNs. In this review, the state-of-the-art IP-RPLC-MS bioanalytical methods of OGNs and their metabolites published in the past 10 years (2012-2022) are critically reviewed. Recent advances in IP-reagent-free LC-MS bioanalysis methods are discussed. Finally, we describe future opportunities for developing new methods that can be used for the comprehensive bioanalysis of OGNs.
Collapse
|
9
|
Oligonucleotides Isolation and Separation—A Review on Adsorbent Selection. Int J Mol Sci 2022; 23:ijms23179546. [PMID: 36076941 PMCID: PMC9455468 DOI: 10.3390/ijms23179546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Oligonucleotides have many important applications, including as primers in polymerase chain reactions and probes for DNA sequencing. They are proposed as a diagnostic and prognostic tool for various diseases and therapeutics in antisense therapy. Accordingly, it is necessary to develop liquid chromatography and solid phase extraction methods to separate oligonucleotides and isolate them from biological samples. Many reviews have been written about the determination of these compounds using the separation technique or sample preparation for their isolation. However, presumably, there are no articles that critically review the adsorbents used in liquid chromatography or solid phase extraction. The present publication reviews the literature from the last twenty years related to supports (silica, polymers, magnetic nanoparticles) and their modifications. The discussed issues concern reversed phase (alkyl, aromatic, cholesterol, mixed ligands), ion-exchange (strong and weak ones), polar (silica, polyhydroxy, amide, zwitterionic), and oligonucleotide-based adsorbents.
Collapse
|
10
|
Vervaeke P, Borgos SE, Sanders NN, Combes F. Regulatory guidelines and preclinical tools to study the biodistribution of RNA therapeutics. Adv Drug Deliv Rev 2022; 184:114236. [PMID: 35351470 PMCID: PMC8957368 DOI: 10.1016/j.addr.2022.114236] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/09/2022] [Accepted: 03/23/2022] [Indexed: 12/27/2022]
Abstract
The success of the messenger RNA-based COVID-19 vaccines of Moderna and Pfizer/BioNTech marks the beginning of a new chapter in modern medicine. However, the rapid rise of mRNA therapeutics has resulted in a regulatory framework that is somewhat lagging. The current guidelines either do not apply, do not mention RNA therapeutics, or do not have widely accepted definitions. This review describes the guidelines for preclinical biodistribution studies of mRNA/siRNA therapeutics and highlights the relevant differences for mRNA vaccines. We also discuss the role of in vivo RNA imaging techniques and other assays to fulfill and/or complement the regulatory requirements. Specifically, quantitative whole-body autoradiography, microautoradiography, mass spectrometry-based assays, hybridization techniques (FISH, bDNA), PCR-based methods, in vivo fluorescence imaging, and in vivo bioluminescence imaging, are discussed. We conclude that this new and rapidly evolving class of medicines demands a multi-layered approach to fully understand its biodistribution and in vivo characteristics.
Collapse
Affiliation(s)
- P Vervaeke
- Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820 Merelbeke, Belgium
| | - S E Borgos
- SINTEF Industry, Dept. of Biotechnology and Nanomedicine, Research Group Mass Spectrometry, Sem Sælands v. 2A, N-7034 Trondheim, Norway
| | - N N Sanders
- Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820 Merelbeke, Belgium.
| | - F Combes
- SINTEF Industry, Dept. of Biotechnology and Nanomedicine, Research Group Mass Spectrometry, Sem Sælands v. 2A, N-7034 Trondheim, Norway.
| |
Collapse
|
11
|
Talap J, Zhao J, Shen M, Song Z, Zhou H, Kang Y, Sun L, Yu L, Zeng S, Cai S. Recent advances in therapeutic nucleic acids and their analytical methods. J Pharm Biomed Anal 2021; 206:114368. [PMID: 34571322 DOI: 10.1016/j.jpba.2021.114368] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022]
Abstract
Therapeutic nucleic acids are various chemically modified RNA or DNA with different functions, which mainly play roles at the gene level. Owing to its accurately targeting at pathogenic genes, nucleic acid based therapeutics have a wide range of application prospects. Recently, the improvement on chemical synthesis and delivery materials accelerated the development of therapeutic nucleic acids rapidly. Up to now, 17 nucleic acid based therapeutics approved by Food and Drug Administration (FDA) or European Medicines Agency (EMA). The development of therapeutics raised higher requirements for analytical methods, both in quality control and in clinical research. The first part of this review introduces different classes of therapeutic nucleic acids, including antisense oligonucleotide (ASO), RNA interference (RNAi) therapy, mRNA, aptamer and other classes which are under research. The second part reviews the therapeutic nucleic acids commercialized from 2019 to now. The third part discusses the analytical methods for nucleic acid based therapeutics, including liquid chromatography-based methods, capillary gel electrophoresis (CGE), hybridization enzyme-linked immunosorbent assay (ELISA) and other infrequently used methods. Finally, the advantages and shortcomings of these methods are summarized, and the future development of analysis methods are prospected.
Collapse
Affiliation(s)
- Jadera Talap
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Minzhe Shen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zihan Song
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hui Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yu Kang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lianli Sun
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center of Zhejiang University, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, China.
| | - Sheng Cai
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center of Zhejiang University, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, China.
| |
Collapse
|
12
|
Nguyen JM, Gilar M, Koshel B, Donegan M, MacLean J, Li Z, Lauber MA. Assessing the impact of nonspecific binding on oligonucleotide bioanalysis. Bioanalysis 2021; 13:1233-1244. [PMID: 34472373 DOI: 10.4155/bio-2021-0115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Aim: Accurate and reliable quantification of oligonucleotides can be difficult, which has led to an increased focus on bioanalytical methods for more robust analyses. Recent advances toward mitigating sample losses on liquid chromatography (LC) systems have produced recovery advantages for oligonucleotide separations. Results & methodology: LC instruments and columns constructed from MP35N metal alloy and stainless steel columns were compared against LC hardware modified with hybrid inorganic-organic silica surfaces. Designed to minimize metal-analyte adsorption, these surfaces demonstrated a 73% increase in 25-mer phosphorothioate oligonucleotide recovery using ion-pairing reversed-phase LC versus standard LC surfaces, most particularly upon initial use. Conclusion: Hybrid silica chromatographic surfaces improve the performance, detection limits and reproducibility of oligonucleotide bioanalytical assays.
Collapse
Affiliation(s)
- Jennifer M Nguyen
- School of Science, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg, Denmark
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - Martin Gilar
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - Brooke Koshel
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | | | - Jason MacLean
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - Zhimin Li
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | | |
Collapse
|
13
|
Thevis M, Piper T, Thomas A. Recent advances in identifying and utilizing metabolites of selected doping agents in human sports drug testing. J Pharm Biomed Anal 2021; 205:114312. [PMID: 34391136 DOI: 10.1016/j.jpba.2021.114312] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/29/2022]
Abstract
Probing for evidence of the administration of prohibited therapeutics, drugs and/or drug candidates as well as the use of methods of doping in doping control samples is a central assignment of anti-doping laboratories. In order to accomplish the desired analytical sensitivity, retrospectivity, and comprehensiveness, a considerable portion of anti-doping research has been invested into studying metabolic biotransformation and elimination profiles of doping agents. As these doping agents include lower molecular mass drugs such as e.g. stimulants and anabolic androgenic steroids, some of which further necessitate the differentiation of their natural/endogenous or xenobiotic origin, but also higher molecular mass substances such as e.g. insulins, growth hormone, or siRNA/anti-sense oligonucleotides, a variety of different strategies towards the identification of employable and informative metabolites have been developed. In this review, approaches supporting the identification, characterization, and implementation of metabolites exemplified by means of selected doping agents into routine doping controls are presented, and challenges as well as solutions reported and published between 2010 and 2020 are discussed.
Collapse
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany; European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne, Bonn, Germany.
| | - Thomas Piper
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Andreas Thomas
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| |
Collapse
|
14
|
Nuckowski Ł, Dzieszkowski K, Rafiński Z, Studzińska S. Application of Magnetic Nanoparticles Coated with Crosslinked Zwitterionic Poly(ionic liquid)s for the Extraction of Oligonucleotides. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3146. [PMID: 34201146 PMCID: PMC8226603 DOI: 10.3390/ma14123146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 11/16/2022]
Abstract
Magnetic nanoparticles coated with zwitterionic poly(ionic liquid)s were applied for dispersive solid-phase extraction of oligonucleotides. The materials were synthesized by miniemulsion copolymerization of ionic liquids and divinylbenzene on magnetic nanoparticles. The functional monomers contain a positively charged imidazolium ring and one of the anionic groups: derivatives of acetate, malonate, or butyl sulfonate ions. Adsorption of unmodified DNA oligonucleotide on obtained materials was possible in ion-exchange (IE) and hydrophilic interactions (HI) mode. The adsorption in IE was possible at low pH and was almost complete. The adsorption in HI mode required the usage of appropriate addition of organic solvent but did not provide full adsorption. Studies on the desorption of the analytes included determining the impact of ammonium acetate concentration and pH and organic solvents addition on the recovery. The material containing acetic fragments as an anionic group was selected for the final procedure with the use of 10 mM ammonium acetate (pH = 9.5)/methanol (50/50, v/v) as an elution solution. The magnetic dispersive solid-phase extraction procedure was tested for the oligonucleotides with various modifications and lengths. Moreover, it was applied to extract DNA oligonucleotide and its synthetic metabolites from enriched human plasma without any pre-purification, with recoveries greater than 80%.
Collapse
Affiliation(s)
- Łukasz Nuckowski
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., PL-87-100 Toruń, Poland;
| | - Krzysztof Dzieszkowski
- Chair of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., PL-87-100 Toruń, Poland; (K.D.); (Z.R.)
| | - Zbigniew Rafiński
- Chair of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., PL-87-100 Toruń, Poland; (K.D.); (Z.R.)
| | - Sylwia Studzińska
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., PL-87-100 Toruń, Poland;
| |
Collapse
|
15
|
The role of ligand-binding assay and LC-MS in the bioanalysis of complex protein and oligonucleotide therapeutics. Bioanalysis 2021; 13:931-954. [PMID: 33998268 DOI: 10.4155/bio-2021-0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ligand-binding assay (LBA) and LC-MS have been the preferred bioanalytical techniques for the quantitation and biotransformation assessment of various therapeutic modalities. This review provides an overview of the applications of LBA, LC-MS/MS and LC-HRMS for the bioanalysis of complex protein therapeutics including antibody-drug conjugates, fusion proteins and PEGylated proteins as well as oligonucleotide therapeutics. The strengths and limitations of LBA and LC-MS, along with some guidelines on the choice of appropriate bioanalytical technique(s) for the bioanalysis of these therapeutic modalities are presented. With the discovery of novel and more complex therapeutic modalities, there is an increased need for the biopharmaceutical industry to develop a comprehensive bioanalytical strategy integrating both LBA and LC-MS.
Collapse
|
16
|
Deprey K, Batistatou N, Kritzer JA. A critical analysis of methods used to investigate the cellular uptake and subcellular localization of RNA therapeutics. Nucleic Acids Res 2020; 48:7623-7639. [PMID: 32644123 PMCID: PMC7430645 DOI: 10.1093/nar/gkaa576] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/21/2022] Open
Abstract
RNA therapeutics are a promising strategy to treat genetic diseases caused by the overexpression or aberrant splicing of a specific protein. The field has seen major strides in the clinical efficacy of this class of molecules, largely due to chemical modifications and delivery strategies that improve nuclease resistance and enhance cell penetration. However, a major obstacle in the development of RNA therapeutics continues to be the imprecise, difficult, and often problematic nature of most methods used to measure cell penetration. Here, we review these methods and clearly distinguish between those that measure total cellular uptake of RNA therapeutics, which includes both productive and non-productive uptake, and those that measure cytosolic/nuclear penetration, which represents only productive uptake. We critically analyze the benefits and drawbacks of each method. Finally, we use key examples to illustrate how, despite rigorous experimentation and proper controls, our understanding of the mechanism of gymnotic uptake of RNA therapeutics remains limited by the methods commonly used to analyze RNA delivery.
Collapse
Affiliation(s)
- Kirsten Deprey
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, MA 02155, USA
| | - Nefeli Batistatou
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, MA 02155, USA
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, MA 02155, USA
| |
Collapse
|
17
|
The exciting world of oligonucleotides: a multidisciplinary complex challenge for multitasking ingenious bioanalysts. Bioanalysis 2020; 11:1905-1908. [PMID: 31829052 DOI: 10.4155/bio-2019-0264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|