1
|
Li H, Li K, Cheng W, Liu M, Wen L, Zhang Z, Zhang W, Su J, Cai W. Rapid Characterization of the Potential Active of Sinomenine in Rats by Ultra-High-Performance Liquid Chromatography-Quadrupole-Exactive Orbitrap Mass Spectrometry and Molecular Docking. J Sep Sci 2024; 47:e202400486. [PMID: 39375918 DOI: 10.1002/jssc.202400486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 10/09/2024]
Abstract
Sinomenium acutum (Thunb.) Rehd. et Wils is widely used in the treatment of rheumatoid arthritis, with its alkaloid compound sinomenine (SIN) being renowned for its significant anti-inflammatory properties. However, despite its widespread application, the in vivo anti-inflammatory mechanisms and metabolic pathways of SIN remain incompletely understood. This study established a rapid and reliable method based on an ultra-high-performance liquid chromatography method coupled with Quadrupole-Exactive Orbitrap mass spectrometry and molecular docking to identify and characterize SIN and 69 metabolites in rat plasma, urine, and feces, revealing primary metabolic pathways of hydroxylation, demethylation, sulfation, and glucuronidation. Molecular docking results revealed that phase I reactions, including dedimethylation, demethylation, dehydrogenation, and dihydroxylation, along with their composite reactions, were pivotal in influencing SIN's in vivo anti-inflammatory activity. M28, M36, and M59 are potentially the most anti-inflammatory active metabolites of SIN in vivo. This comprehensive analysis unveils SIN's metabolic pathways, offering insights into its biological processes and suggesting a novel approach for exploring active drug constituents. These findings pave the way for further understanding SIN's anti-inflammatory mechanisms, contributing significantly to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Haixia Li
- College Pharmacy, Jiamusi University, Jiamusi, China
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - KaiLin Li
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
- School of Pharmacy, Shandong Second Medical University, Weifang, China
| | - Wenhui Cheng
- College Pharmacy, Jiamusi University, Jiamusi, China
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Mingjuan Liu
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Linwen Wen
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Zexu Zhang
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Wendan Zhang
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Jin Su
- College Pharmacy, Jiamusi University, Jiamusi, China
| | - Wei Cai
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
2
|
Bhardwaj S, Bulluss M, D'Aubeterre A, Derakhshani A, Penner R, Mahajan M, Mahajan VB, Dufour A. Integrating the analysis of human biopsies using post-translational modifications proteomics. Protein Sci 2024; 33:e4979. [PMID: 38533548 DOI: 10.1002/pro.4979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024]
Abstract
Proteome diversities and their biological functions are significantly amplified by post-translational modifications (PTMs) of proteins. Shotgun proteomics, which does not typically survey PTMs, provides an incomplete picture of the complexity of human biopsies in health and disease. Recent advances in mass spectrometry-based proteomic techniques that enrich and study PTMs are helping to uncover molecular detail from the cellular level to system-wide functions, including how the microbiome impacts human diseases. Protein heterogeneity and disease complexity are challenging factors that make it difficult to characterize and treat disease. The search for clinical biomarkers to characterize disease mechanisms and complexity related to patient diagnoses and treatment has proven challenging. Knowledge of PTMs is fundamentally lacking. Characterization of complex human samples that clarify the role of PTMs and the microbiome in human diseases will result in new discoveries. This review highlights the key role of proteomic techniques used to characterize unknown biological functions of PTMs derived from complex human biopsies. Through the integration of diverse methods used to profile PTMs, this review explores the genetic regulation of proteoforms, cells of origin expressing specific proteins, and several bioactive PTMs and their subsequent analyses by liquid chromatography and tandem mass spectrometry.
Collapse
Affiliation(s)
- Sonali Bhardwaj
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mitchell Bulluss
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ana D'Aubeterre
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Afshin Derakhshani
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Regan Penner
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - MaryAnn Mahajan
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California, USA
| | - Vinit B Mahajan
- Molecular Surgery Laboratory, Stanford University, Palo Alto, California, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, California, USA
| | - Antoine Dufour
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Kolesnichenko I. Development of a Method for Multisensory Stripping Voltammetry in the Analysis of Medical Preparations. ACS OMEGA 2023; 8:40229-40241. [PMID: 37929103 PMCID: PMC10620926 DOI: 10.1021/acsomega.3c03946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
For the effective dosage of newly developed ophthalmic drugs, an assessment of the dynamics of their concentration in lacrimal fluid over time is required. To express the detection and identification of drugs, new methods are needed that must meet numerous requirements, not the least of which are selectivity, speed, the absence of false-negative results, and cost-effectiveness. The possibility of identifying anesthetics (sevoflurane) in lacrimal fluid has been studied using a new electrochemical method of multisensory inversion voltammetry in the electronic tongue and electronic nose format. The measurements were performed on a planar electrode, which is a three-electrode structure. The solution of the test system consisted of 0.05 M KCl, which contained the metal cations Zn2+, Cd2+, Pb2+, Co2+, and Hg2+ at a concentration of 5 × 10-5 M. It is shown that this method is effective for the determination of anesthetics, and the dynamics of changes in their concentration over time are examined. This study aimed to research the behavioral pharmacokinetics in the lacrimal fluid of the opioid drug sevoflurane in pediatric ophthalmology using multisensory stripping voltammetry in patients during strabismus correction surgery. The dynamics of changes in their concentrations over time were examined. After the instillation of the anesthetics in patients, their concentrations in the tear fluid remained unchanged within 10 min. The list of organic substances that can be determined by multisensory stripping voltammetry has been extended. The class of organic substances determined by the method of multisensory inversion voltammetry has been expanded.
Collapse
Affiliation(s)
- Irina Kolesnichenko
- Frumkin Institute of Physical
Chemistry and Electrochemistry, Russian
Academy of Sciences, Leninskiy Prospect 31/4, Moscow 119071, Russian Federation
| |
Collapse
|
4
|
Ye L, Zhang HM, Zhou BJ, Tang W, Zhou JL. Advancements in Analyzing Tumor Metabolites through Chemical Derivatization-Based Chromatography. J Chromatogr A 2023; 1706:464236. [PMID: 37506465 DOI: 10.1016/j.chroma.2023.464236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Understanding the metabolic abnormalities of tumors is crucial for early diagnosis, prognosis, and treatment. Accurate identification and quantification of metabolites in biological samples are essential to investigate the relationship between metabolite variations and tumor development. Common techniques like LC-MS and GC-MS face challenges in measuring aberrant metabolites in tumors due to their strong polarity, isomerism, or low ionization efficiency during MS detection. Chemical derivatization of metabolites offers an effective solution to overcome these challenges. This review focuses on the difficulties encountered in analyzing aberrant metabolites in tumors, the principles behind chemical derivatization methods, and the advancements in analyzing tumor metabolites using derivatization-based chromatography. It serves as a comprehensive reference for understanding the analysis and detection of tumor metabolites, particularly those that are highly polar and exhibit low ionization efficiency.
Collapse
Affiliation(s)
- Lu Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Hua-Min Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Bing-Jun Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Weiyang Tang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| | - Jian-Liang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
5
|
Huang AX, Li JM, Yang L, Chen L, Zhou ZH, Li P, Gao W. A mass defect filtering combined background subtraction strategy for rapid screening and identification of metabolites in rat plasma after oral administration of Yindan Xinnaotong soft capsule. J Pharm Biomed Anal 2023; 231:115400. [PMID: 37099978 DOI: 10.1016/j.jpba.2023.115400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/07/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023]
Abstract
The absorbed prototypes and metabolites of traditional Chinese medicines (TCMs) serves an important part in pharmacological action and clinical effects. However, the comprehensive characterization of which is facing actual or possible rigorous challenges due to the lack of data mining methods and the complexity of metabolite samples. Yindan Xinnaotong soft capsule (YDXNT), a typical traditional Chinese medicine prescription consisting of extracts from 8 herbal medicines, is widely used for the treatment of angina pectoris and ischemic stroke in the clinic. This study established a systematic data mining strategy based on ultra-high performance liquid chromatography tandem quadrupole-time-of-fight mass spectrometry (UHPLC-Q-TOF MS) for comprehensive metabolite profiling of YDXNT in rat plasma after oral administration. The multi-level feature ion filtration strategy was primarily conducted through the full scan MS data of plasma samples. All potential metabolites were rapidly fileted out from the endogenous background interference based on the background subtract and the chemical type specifically mass defect filter (MDF) windows including flavonoids, ginkgolides, phenolic acids, saponins, and tanshinones. As the MDF windows of certain types were overlapped, the screened-out potential metabolites were deeply characterized and identified according to their retention times (RT), integrating neutral loss filtering (NLF), diagnostic fragment ions filtering (DFIF), and further confirmed by reference standards. Thus, a total of 122 compounds, consisting of 29 prototype components (16 confirmed with reference standards) and 93 metabolites had been identified. This study provides a rapid and robust metabolite profiling method for researching complicated traditional Chinese medicine prescriptions.
Collapse
Affiliation(s)
- An-Xian Huang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Jun-Ming Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Liu Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ling Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Zi-Han Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Wen Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
| |
Collapse
|
6
|
Cai X, Dai X, Li Z, Chen J, Wang X, Zhang M. An UPLC-MS/MS method for quantification of spiraeoside in mouse blood and its application to a pharmacokinetic and bioavailability study. ACTA CHROMATOGR 2022. [DOI: 10.1556/1326.2022.01061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
A simple, rapid, and sensitive method based on UPLC-MS/MS was developed to determine spiraeoside in mouse blood, and was applied to the pharmacokinetics and bioavailability of spiraeoside after mice after intravenous (a dose of 5 mg kg−1) and oral (a dose of 20 mg kg−1) administration. On HSS T3 column set at 40 °C, chromatographic separation was obtained with the mobile phase of acetonitrile and 0.1% formic acid using the gradient elution. Spiraeoside and internal standard (IS) were quantitatively analyzed using multiple reaction monitoring (MRM) mode in electrospray (ESI) positive interface. The MRM mode was monitoring the fragmentation of m/z 465.4→303.1 and m/z 451.3→ 289.2 for spironoside and IS, respectively. The results showed a good linear relationship was in the concentration range of 1–200 ng mL−1 (r > 0.998) and the lower limit of quantification (LLOQ) was 1.0 ng mL−1. The intra- and the inter-day precision (RSD%) of the method was within 14.0%, and the accuracy ranged from 90.0% to 115.0%. The extraction recovery of spriaeoside was better than 63.0%, and the matrix effects were in the range of 86%–98%. It also showed the half-life was short, and the absolute bioavailability was 4.0% in mice. Therefore, the established UPLC-MS/MS method was suitable for the pharmacokinetic and bioavailability study of spiraeoside in mice.
Collapse
Affiliation(s)
- Xiaojun Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiangyi Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhou Li
- Wenzhou Customs Comprehensive Technical Service Center, Wenzhou, China
| | - Junying Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xianqin Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Meiling Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
A Rapid LC-MS/MS Method for Simultaneous Determination of Ten Flavonoid Metabolites of Naringin in Rat Urine and Its Application to an Excretion Study. Foods 2022; 11:foods11030316. [PMID: 35159467 PMCID: PMC8834102 DOI: 10.3390/foods11030316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 12/28/2022] Open
Abstract
Naringin is a dietary flavonoid glycoside with multiple bioactivities. It has been involved in numerous metabolism and excretion studies, and its metabolic properties are clear. However, information concerning the excretion profile of its original metabolites are still scarce, and few methods for simultaneous determination of multiple original metabolites of naringin in biological samples have been reported so far. In this study, a rapid and sensitive method for simultaneous determination of ten flavonoid metabolites of naringin in rat urine was developed with an UHPLC-Q-Trap-MS/MS system. One-step protein precipitation method with acetonitrile was used to extract analytes. A rapid chromatographic separation within 11 min was performed on an ACQUITY UPLC® BEH C18 column (2.1 mm × 50 mm, 1.7 μm) using gradient elution with a mobile phase of water and methanol, both with 0.1% formic acid (v/v). MS/MS detection was conducted in negative ion mode and multiple reactions monitoring scanning mode. The analytical method was fully validated and successfully applied to monitor the excretion profiles of naringin in rat urine. Quantitative results revealed the visible individual difference and low urinary recovery of flavonoid metabolites in the excretion of naringin, which may be helpful for further study to understand the in vivo behavior and action mechanism of naringin.
Collapse
|