1
|
Current Nucleic Acid Extraction Methods and Their Implications to Point-of-Care Diagnostics. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9306564. [PMID: 28785592 PMCID: PMC5529626 DOI: 10.1155/2017/9306564] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022]
Abstract
Nucleic acid extraction (NAE) plays a vital role in molecular biology as the primary step for many downstream applications. Many modifications have been introduced to the original 1869 method. Modern processes are categorized into chemical or mechanical, each with peculiarities that influence their use, especially in point-of-care diagnostics (POC-Dx). POC-Dx is a new approach aiming to replace sophisticated analytical machinery with microanalytical systems, able to be used near the patient, at the point of care or point of need. Although notable efforts have been made, a simple and effective extraction method is still a major challenge for widespread use of POC-Dx. In this review, we dissected the working principle of each of the most common NAE methods, overviewing their advantages and disadvantages, as well their potential for integration in POC-Dx systems. At present, it seems difficult, if not impossible, to establish a procedure which can be universally applied to POC-Dx. We also discuss the effects of the NAE chemicals upon the main plastic polymers used to mass produce POC-Dx systems. We end our review discussing the limitations and challenges that should guide the quest for an efficient extraction method that can be integrated in a POC-Dx system.
Collapse
|
2
|
|
3
|
Ultrasensitive strategy based on PtPd nanodendrite/nano-flower-like@GO signal amplification for the detection of long non-coding RNA. Biosens Bioelectron 2015; 74:214-21. [PMID: 26143461 DOI: 10.1016/j.bios.2015.06.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/19/2015] [Accepted: 06/07/2015] [Indexed: 12/17/2022]
Abstract
Highly up-regulated in liver cancer (HULC) is a novel promising noninvasive biomarker for hepatocellular carcinoma (HCC), which is a kind of long non-coding RNAs (lncRNAs). But traditional methods limited HULC clinical detection for ownself drawbacks. Development a new HULC detection approach is urgent and necessary. Electrochemical nucleic acid sensor based on different signal amplification strategies with high sensitivity, fast, simple, and convenient, may solve this problem. Herein, we propose a novel strategy based on Pt-Pd bimetallic nanodendrites/nanoflower-like clusters on graphene oxide/Au/horseradish peroxidase (PtPd BND/BNF@GO/Au/HRP) to enhance the catalytic efficiency and sensitivity. And Au particles were simultaneously and separately capped with thionine or detection probe, which increase the binding amount of detection probe and decrease the electronic background. The results indicated that the catalytic effect was noticeably elevated and that the biosensor provides ultrasensitive detection for the lncRNA HULC. The linear calibration of the biosensor ranged from 1.00×10(-3) to 1.00×10(3) pM/mL, and the limit of detection was 0.247 fM/mL. The lncRNA biosensor based on the PtPd BND/BNF@GO/Au/HRP/Au/thionine exhibited acceptable reproducibility and clear selectivity. This strategy may provide a new alternative for clinical HCC diagnosis through the detection of HULC.
Collapse
|
4
|
Ma Z, Liu N. Design of immunoprobes for electrochemical multiplexed tumor marker detection. Expert Rev Mol Diagn 2015; 15:1075-83. [PMID: 26027743 DOI: 10.1586/14737159.2015.1052798] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many approaches have been developed for simultaneous detection of multiple tumor markers. Among these approaches, the electrochemical immunoassay has the advantage of high sensitivity and specificity and could be easily expanded into multiplex detection platform. For the simultaneous multianalyte electrochemical immunosensor, performance is closely related with the characteristics of the immunoprobes and substrate. In order to construct a multilabeled immunoprobe platform, the most important issue is how to discriminate each signal for each analyte from the multiple antigen-antibody reactions. Currently, enzyme-based, noble metal nanomaterials, carbonmaterials and polymer-based nanomaterial immunoprobes have been used for dual- or three-analyte detections. However, there are still some challenges in developing sensitive method to detect three or more tumor markers owing to the lack of redox-active species that can produce three or more distinctive peaks. Additionally, for the immunosensing substrate, good conductivity, high specific surface area and good biocompatibility are further necessities.
Collapse
Affiliation(s)
- Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | | |
Collapse
|
5
|
Paleček E, Tkáč J, Bartošík M, Bertók T, Ostatná V, Paleček J. Electrochemistry of nonconjugated proteins and glycoproteins. Toward sensors for biomedicine and glycomics. Chem Rev 2015; 115:2045-108. [PMID: 25659975 PMCID: PMC4360380 DOI: 10.1021/cr500279h] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Emil Paleček
- Institute
of Biophysics Academy of Science of the Czech Republic, v.v.i., Královopolská
135, 612 65 Brno, Czech Republic
| | - Jan Tkáč
- Institute
of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Martin Bartošík
- Regional
Centre for Applied Molecular Oncology, Masaryk
Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic
| | - Tomáš Bertók
- Institute
of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Veronika Ostatná
- Institute
of Biophysics Academy of Science of the Czech Republic, v.v.i., Královopolská
135, 612 65 Brno, Czech Republic
| | - Jan Paleček
- Central
European Institute of Technology, Masaryk
University, Kamenice
5, 625 00 Brno, Czech Republic
| |
Collapse
|
6
|
Procalcitonin sensitive detection based on graphene–gold nanocomposite film sensor platform and single-walled carbon nanohorns/hollow Pt chains complex as signal tags. Biosens Bioelectron 2014; 60:210-7. [DOI: 10.1016/j.bios.2014.03.071] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/30/2014] [Accepted: 03/31/2014] [Indexed: 02/01/2023]
|
7
|
Chaocharoen W, Suginta W, Limbut W, Ranok A, Numnuam A, Khunkaewla P, Kanatharana P, Thavarungkul P, Schulte A. Electrochemical detection of the disease marker human chitinase-3-like protein 1 by matching antibody-modified gold electrodes as label-free immunosensors. Bioelectrochemistry 2014; 101:106-13. [PMID: 25203453 DOI: 10.1016/j.bioelechem.2014.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 06/27/2014] [Accepted: 07/06/2014] [Indexed: 01/27/2023]
Abstract
Tissue inflammation, certain cardiovascular syndromes and the occurrence of some solid tumors are correlated with raised serum concentrations of human chitinase-3-like protein 1 (YKL-40), a mammalian chitinase-like glycoprotein, which has become the subject of current research. Here we report the construction and characterization of an electrochemical platform for label-free immunosensing of YKL-40. Details of the synthesis of YKL-40 and production of anti-YKL-40 immunoglobulin G (IgG) are provided and cross-reactivity tests presented. Polyclonal anti-YKL-40 IgG was immobilized on gold electrodes and the resulting immunosensors were operated in an electrochemical flow system with capacitive signal generation. The strategy offered a wide linear detection range (0.1μg/L to 1mg/L) with correlation coefficients (R(2)) above 0.99 and good sensitivity (12.28±0.27nF/cm(2) per decade of concentration change). Additionally, the detection limit of 0.07±0.01μg/L was well below that of optical enzyme-linked immunosorbent assays (ELISAs), which makes the proposed methodology a promising alternative for YKL-40 related disease studies.
Collapse
Affiliation(s)
- Wethaka Chaocharoen
- Biochemistry-Electrochemistry Research Unit, Schools of Chemistry and Biochemistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Wipa Suginta
- Biochemistry-Electrochemistry Research Unit, Schools of Chemistry and Biochemistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Warakorn Limbut
- Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Applied Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Araya Ranok
- Biochemistry-Electrochemistry Research Unit, Schools of Chemistry and Biochemistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Apon Numnuam
- Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Panida Khunkaewla
- Biochemistry-Electrochemistry Research Unit, Schools of Chemistry and Biochemistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Proespichaya Kanatharana
- Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Panote Thavarungkul
- Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| | - Albert Schulte
- Biochemistry-Electrochemistry Research Unit, Schools of Chemistry and Biochemistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
8
|
Platinum porous nanoparticles for the detection of cancer biomarkers: what are the advantages over existing techniques? Bioanalysis 2014; 6:903-5. [DOI: 10.4155/bio.14.32] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
9
|
Liu F, Xiang G, Chen X, Luo F, Jiang D, Huang S, Li Y, Pu X. A novel strategy of procalcitonin detection based on multi-nanomaterials of single-walled carbon nanohorns–hollow Pt nanospheres/PAMAM as signal tags. RSC Adv 2014. [DOI: 10.1039/c4ra00169a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Holford TRJ, Holmes JL, Collyer SD, Davis F, Higson SPJ. Label-Free Impedimetric Immunosensor for Nerve Growth Factor Protein Constructed Using an Automated Dispensing System. ELECTROANAL 2013. [DOI: 10.1002/elan.201300132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Holford TR, Holmes JL, Collyer SD, Davis F, Higson SP. Label-free impedimetric immunosensors for psoriasin—Increased reproducibility and sensitivity using an automated dispensing system. Biosens Bioelectron 2013; 44:198-203. [DOI: 10.1016/j.bios.2012.11.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/27/2012] [Accepted: 11/30/2012] [Indexed: 10/27/2022]
|
12
|
Suginta W, Khunkaewla P, Schulte A. Electrochemical Biosensor Applications of Polysaccharides Chitin and Chitosan. Chem Rev 2013; 113:5458-79. [DOI: 10.1021/cr300325r] [Citation(s) in RCA: 341] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wipa Suginta
- Biochemistry and Electrochemistry
Research Unit, Schools
of Chemistry and Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima
30000, Thailand
| | - Panida Khunkaewla
- Biochemistry and Electrochemistry
Research Unit, Schools
of Chemistry and Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima
30000, Thailand
| | - Albert Schulte
- Biochemistry and Electrochemistry
Research Unit, Schools
of Chemistry and Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima
30000, Thailand
| |
Collapse
|
13
|
|
14
|
Ostatná V, Černocká H, Kurzątkowska K, Paleček E. Native and denatured forms of proteins can be discriminated at edge plane carbon electrodes. Anal Chim Acta 2012; 735:31-6. [DOI: 10.1016/j.aca.2012.05.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 05/04/2012] [Accepted: 05/11/2012] [Indexed: 11/26/2022]
|
15
|
Yang YC, Dong SW, Shen T, Jian CX, Chang HJ, Li Y, He FT, Zhou JX. A Label-Free Amperometric Immunoassay for Thrombomodulin Using Graphene/Silver-Silver Oxide Nanoparticles as a Immobilization Matrix. ANAL LETT 2012. [DOI: 10.1080/00032719.2011.653896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Holford TR, Davis F, Higson SP. Recent trends in antibody based sensors. Biosens Bioelectron 2012; 34:12-24. [DOI: 10.1016/j.bios.2011.10.023] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/06/2011] [Accepted: 10/13/2011] [Indexed: 12/29/2022]
|
17
|
Liu Z, Zhang W, Zhu S, Zhang L, Hu L, Parveen S, Xu G. Ultrasensitive signal-on DNA biosensor based on nicking endonuclease assisted electrochemistry signal amplification. Biosens Bioelectron 2011; 29:215-8. [PMID: 21855318 DOI: 10.1016/j.bios.2011.07.076] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/18/2011] [Accepted: 07/31/2011] [Indexed: 10/17/2022]
Abstract
Combining the advantages of signal-on strategy and nicking endonuclease assisted electrochemistry signal amplification (NEAESA), a new sensitive and signal-on electrochemical DNA biosensor for the sequence specific DNA detection based on NEAESA has been developed for the first time. A Hairpin-shape probe (HP), containing the target DNA recognition sequence, is thiol-modified at 5' end and immobilized on gold electrode via Au-S bonding. Subsequently, the HP modified electrode is hybridized with target DNA to form a duplex. Then the nicking endonuclease is added and nicks the HP strand in the duplex. After nicking, 3'-ferrocene (Fc)-labeled part complementary probe (Fc-PCP) is introduced on the electrode surface by hybridizing with the thiol-modified HP fragment, which results in the generation of electrochemical signal. Hence, the DNA biosensor is constructed successfully. The present DNA biosensor shows a wide linear range of 5.0×10(-13)-5.0×10(-8)M for detecting target DNA, with a low detection limit of 0.167pM. The proposed strategy does not require any amplifying labels (enzymes, DNAzymes, nanoparticles, etc.) for biorecognition events, which avoids false-positive results to occur frequently. Moreover, the strategy has the benefits of simple preparation, convenient operation, good selectivity, and high sensitivity. With the advantages mentioned above, this simple and sensitive strategy has the potential to be integrated in portable, low cost and simplified devices for diagnostic applications.
Collapse
Affiliation(s)
- Zhongyuan Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | | | | | | | | | | | | |
Collapse
|
18
|
Amplified immunosensing based on ionic liquid-doped chitosan film as a matrix and Au nanoparticle decorated graphene nanosheets as labels. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.04.096] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Gold–silver–graphene hybrid nanosheets-based sensors for sensitive amperometric immunoassay of alpha-fetoprotein using nanogold-enclosed titania nanoparticles as labels. Anal Chim Acta 2011; 692:116-24. [DOI: 10.1016/j.aca.2011.02.061] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/24/2011] [Accepted: 02/28/2011] [Indexed: 01/07/2023]
|