1
|
Wei Y, Sun Y, Jia S, Yan P, Xiong C, Qi M, Wang C, Du Z, Jiang H. Identification of endogenous carbonyl steroids in human serum by chemical derivatization, hydrogen/deuterium exchange mass spectrometry and the quantitative structure-retention relationship. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1226:123776. [PMID: 37311272 DOI: 10.1016/j.jchromb.2023.123776] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/09/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Steroids are tetracyclic aliphatic compounds, and most of them contain carbonyl groups. The disordered homeostasis of steroids is closely related to the occurrence and progression of various diseases. Due to high structural similarity, low concentrations in vivo, poor ionization efficiency, and interference from endogenous substances, it is very challenging to comprehensively and unambiguously identify endogenous steroids in biological matrix. Herein, an integrated strategy was developed for the characterization of endogenous steroids in serum based on chemical derivatization, ultra-performance liquid chromatography quadrupole Exactive mass spectrometry (UPLC-Q-Exactive-MS/MS), hydrogen/deuterium (H/D) exchange, and a quantitative structure-retention relationship (QSRR) model. To enhance the mass spectrometry (MS) response of carbonyl steroids, the ketonic carbonyl group was derivatized by Girard T (GT). Firstly, the fragmentation rules of derivatized carbonyl steroid standards by GT were summarized. Then, carbonyl steroids in serum were derivatized by GT and identified based on the fragmentation rules or by comparing retention time and MS/MS spectra with those of standards. H/D exchange MS was utilized to distinguish derivatized steroid isomers for the first time. Finally, a QSRR model was constructed to predict the retention time of the unknown steroid derivatives. With this strategy, 93 carbonyl steroids were identified from human serum, and 30 of them were determined to be dicarbonyl steroids by the charge number of characteristic ions and the number of exchangeable hrdrogen or comparing with standards. The QSRR model built by the machine learning algorithms has an excellent regression correlation, thus the accurate structures of 14 carbonyl steroids were determined, among which three steroids were reported for the first time in human serum. This study provides a new analytical method for the comprehensive and reliable identification of carbonyl steroids in biological matrix.
Collapse
Affiliation(s)
- Yinyu Wei
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Sun
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuailong Jia
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Pan Yan
- Department of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410028, China
| | - Chaomei Xiong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meiling Qi
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chenxi Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhifeng Du
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hongliang Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
2
|
Zhang X, Liu G, Sang Z, Guo Q, Zhou Y. Trace quantification of GL-V9 and its glucuronide metabolites (5-O-glucuronide GL-V9) in Beagle dog plasma by UPLC-MS/MS and its application to a pharmacokinetic study. PLoS One 2023; 18:e0286467. [PMID: 37285365 DOI: 10.1371/journal.pone.0286467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/16/2023] [Indexed: 06/09/2023] Open
Abstract
GL-V9, a new synthetic flavonoid derived from wogonin, has shown beneficial biological functions. In this study, accurate and sensitive UPLC-MS/MS methods were developed and validated for the quantification of GL-V9 and its glucuronide metabolite (5-O-glucuronide GL-V9) in Beagle dog plasma. The chromatographic separation was performed on a C8 column (ACE Excel 5 C8 50×3.0 mm) using 0.1% formic acid and acetonitrile were used as mobile phase. Mass detection was performed on a triple quadrupole tandem mass spectrometer equipped with an electrospray ionization (ESI) interface operating in positive ion mode. Quantitative analysis was performed in multiple reaction monitoring (MRM) mode with the transitions of m/z 410.2→126.1 for GL-V9, m/z 586.3→410.0 for 5-O-glucuronide GL-V9 and m/z 180.0→110.3 for phenacetin (internal standard), respectively. The calibration curves for GL-V9 and 5-O-glucuronide GL-V9 showed excellent linearity over the concentration range of 0.5-500 ng/mL with correlation coefficient greater than 0.99. The intra- and inter-day accuracies were within 99.86% to 109.20% for GL-V9 and 92.55% to 106.20% for 5-O-glucuronide GL-V9, respectively. The mean recovery was 88.64% ± 2.70% for GL-V9, and 92.31% ± 6.28% for 5-O-glucuronide GL-V9, respectively. The validated method was successfully applied to the pharmacokinetic study in Beagle dogs after oral and intravenous administration. The oral bioavailability of GL-V9 was approximately 2.47%~4.35% in Beagle dogs and reached steady state on the fifth day after repeated dosing.
Collapse
Affiliation(s)
- Xuefeng Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
- TriApex Laboratories Co., Ltd, Nanjing, People's Republic of China
| | - Guanlan Liu
- TriApex Laboratories Co., Ltd, Nanjing, People's Republic of China
| | - Zechun Sang
- TriApex Laboratories Co., Ltd, Nanjing, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yuxin Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Li Y, Liu X, Lu F, Zhang J, Zhang Y, Li W, Zhang T. Simultaneous determination of daidzein, its prodrug and major conjugative metabolites in rat plasma and application in a pharmacokinetic study. NEW J CHEM 2022. [DOI: 10.1039/d2nj02690b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The developed method successfully validated that the synthesized prodrug improved the bioavailability of DAN by reducing its phase II metabolites.
Collapse
Affiliation(s)
- Yingchao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Xiaoyu Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Farong Lu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Jiaming Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Yawei Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Wenchao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Tianhong Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| |
Collapse
|
4
|
Development of an UPLC-MS/MS method coupled with in-source CID for quantitative analysis of PEG-PLA copolymer and its application to a pharmacokinetic study in rats. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1125:121716. [PMID: 31319286 DOI: 10.1016/j.jchromb.2019.121716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 12/19/2022]
Abstract
Poly(ethylene glycol)-block-poly(lactic acid) (PEG-PLA) is a biocompatible and amphiphilic block copolymer composed of a hydrophilic PEG block and a hydrophobic PLA block, which can self-assemble into micelles in water. It is one of the most commonly used biodegradable polymers for drug encapsulation, drug solubilization and drug delivery. Due to the complexity and heterogeneity of PEG-PLA, the precise analysis of this polymer is a great challenge. This study reports an application of an UPLC tandem mass spectrometry coupled with in-source collision induced dissociation (CID) technique for the analysis of a model compound mPEG2000-PDLLA2500-COOH, which could be dissociated in source and generate a series of fragment ions corresponding to its subunits. These surrogate ions including PLA-specific and PEG-specific fragment ions could be further broken into specific product ions in collision cell. Finally, the ion transition at m/z 505.0 → 217.0 was selected for the quantitation of mPEG2000-PDLLA2500-COOH. This assay achieved a lower limit of quantitation (LLOQ) of 0.05 μg/mL with only 30 μL rat plasma. The linear range is 0.05 to 5 μg/mL. Intraday and interday accuracy and precision were within ±12.1%. The method was successfully applied to the pharmacokinetic study of mPEG2000-PDLLA2500-COOH in rats. The results revealed that LC-MS/MS coupled with in-source CID is a sensitive and specific strategy for analysis of PEG-PLA. This method can be potentially extended to the analysis of other pharmaceutical polymer excipients.
Collapse
|
5
|
Patel SR. Bioanalytical challenges and strategies for accurately measuring acyl glucuronide metabolites in biological fluids. Biomed Chromatogr 2019; 34:e4640. [DOI: 10.1002/bmc.4640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/13/2019] [Accepted: 06/25/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Shefali R. Patel
- Drug metabolism and pharmacokinetics, Discovery Sciences, Janssen Research and Development Springhouse PA
| |
Collapse
|
6
|
Tron C, Petitcollin A, Verdier MC, Rayar M, Beaurepaire JM, Boudjema K, Bellissant E, Lemaitre F. Tacrolimus: Does direct glucuronidation matter? An analytical and pharmacological perspective. Pharmacol Res 2017; 124:164-166. [DOI: 10.1016/j.phrs.2017.03.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 10/19/2022]
|
7
|
Tron C, Rayar M, Petitcollin A, Beaurepaire JM, Cusumano C, Verdier MC, Houssel-Debry P, Camus C, Boudjema K, Bellissant E, Lemaitre F. A high performance liquid chromatography tandem mass spectrometry for the quantification of tacrolimus in human bile in liver transplant recipients. J Chromatogr A 2016; 1475:55-63. [DOI: 10.1016/j.chroma.2016.10.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 01/09/2023]
|
8
|
Best practices for discovery bioanalysis: balancing data quality and productivity. Bioanalysis 2014; 6:2705-8. [DOI: 10.4155/bio.14.201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Development of a method by UPLC-MS/MS for the quantification of tizoxanide in human plasma and its pharmacokinetic application. Bioanalysis 2012; 4:909-17. [PMID: 22533565 DOI: 10.4155/bio.12.41] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Nitazoxanide (NTZ) is used for the treatment of gastrointestinal tract colonization by anaerobic bacteria, viruses and other pathogens that represent a major cause of morbidity in Latin America. The aim of the present work was to develop and validate a UPLC-MS/MS method for the selective quantification of tizoxanide (TZN, the major metabolite of NTZ) in human plasma using niclosamide as internal standard; and examine its pharmacokinetic application in healthy volunteers. Nine male subjects received a single oral dose of a NTZ 500-mg tablet under fasting conditions. RESULTS The method was linear between 0.1 and 10 µg/ml and capable of separating signals from free-TZN and those delivered by in-source collision-induced dissociation of TZN-glucuronide, quantifying it with accuracy and precision. Mean maximum plasma concentration was 6.79 µg/ml and was reached at 2.4 h post-dose. CONCLUSION The method was validated, fulfilling regulatory guidelines. Results suggest low pharmacokinetic variability in the assayed population.
Collapse
|
10
|
Patel DP, Sharma P, Sanyal M, Singhal P, Shrivastav PS. Challenges in the simultaneous quantitation of sumatriptan and naproxen in human plasma: Application to a bioequivalence study. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 902:122-31. [DOI: 10.1016/j.jchromb.2012.06.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/26/2012] [Accepted: 06/30/2012] [Indexed: 11/30/2022]
|