Horváth K, Sepsey A, Hajós P. Solvent minimization in two-dimensional liquid chromatography.
J Chromatogr A 2015;
1378:32-6. [PMID:
25555411 DOI:
10.1016/j.chroma.2014.12.001]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/10/2014] [Accepted: 12/01/2014] [Indexed: 11/16/2022]
Abstract
An algorithm was developed for the minimization of consumption of organic solvent in comprehensive two-dimensional liquid chromatography (2DLC). It was shown that one can reach higher peak capacities only by using more eluent. The equilibration volume of the second dimension, however, did not affect the solvent consumption significantly. Calculations confirmed that the same target peak capacity could be achieved by consuming significantly different volume of organic modifier depending on the number of fractions analyzed in the second dimension suggesting that 2D separations can be optimized for eluent consumption. It was shown that minimization of eluent usage requires the use of small and high efficient columns in the second dimension. A simple equation was derived for the calculation of the optimal number of collected fractions from the first dimension that allowed the minimization of eluent usage, cost and environmental impact of comprehensive 2DLC separations.
Collapse