1
|
Sabourian R, Mirjalili SZ, Namini N, Chavoshy F, Hajimahmoodi M, Safavi M. HPLC methods for quantifying anticancer drugs in human samples: A systematic review. Anal Biochem 2020; 610:113891. [PMID: 32763305 DOI: 10.1016/j.ab.2020.113891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/09/2020] [Accepted: 07/24/2020] [Indexed: 01/11/2023]
Abstract
Pharmacokinetic (PK) study of anticancer drugs in cancer patients is highly crucial for dose selection and dosing intervals in clinical applications. Once an anticancer drug is administered, it undergoes various metabolic pathways; to determine these pathways, it is necessary to follow the administered drug in biological samples via different analytical methods. In addition, multi-drug quantification methods in patients undergoing multi-drug regimens of cancer therapy can have several benefits, such as reduced sampling time and analysis costs. In order to collect and categorize these studies, we conducted a systematic review of HPLC methods reported for the analysis of anticancer drugs in biological samples. A systematic search was performed on PubMed Medline, Scopus, and Web of Science databases, and 116 studies were included. In summary of included studies, when the objective of a method was to quantify a single drug, MS, or UV detectors were utilized equivalently. On the other hand, in methods with the aim of quantifying drug and metabolite(s) in a single run, MS detectors were the most utilized. This review can provide a comprehensive insight for researchers prior to developing a quantification method and selecting a detector.
Collapse
Affiliation(s)
- Reyhaneh Sabourian
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyedeh Zohreh Mirjalili
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Negar Namini
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Chavoshy
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mannan Hajimahmoodi
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
| |
Collapse
|
2
|
Wang Z, Li S, Zhou C, Sun Y, Pang H, Liu W, Li X. Ratiometric fluorescent nanoprobe based on CdTe/SiO 2/folic acid/silver nanoparticles core-shell-satellite assembly for determination of 6-mercaptopurine. Mikrochim Acta 2020; 187:665. [PMID: 33205310 DOI: 10.1007/s00604-020-04628-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022]
Abstract
A sensitive and robust fluorescent assay of 6-MP is described which relies on the facile assembly of a fluorescence nanoprobe by design of silica nanosphere encapsulated CdTe quantum dots (CdTe QDs) as scaffold, coupling with chemically tethered folic acid (FA)-protected silver nanoparticles (AgNPs) that function as responsive element. In this way a stable ternary core-shell-satellite nanostructure with dual-emission signals can be established. On binding to the target molecules, 6-MP, FA molecules initially occupied by AgNPs are liberated to give dose-dependent fluorescence emission, which can further form a self-calibration ratiometric fluorescence assay using CdTe QDs as an internal reference. The nanoprobe color vividly changes from red to blue, enabling the direct visual detection. The linear concentration range is 0.15~50 μM with the detection limit of 67 nM. By virtue of the favorable selectivity and robust assays, the nanoprobe was applied to 6-MP detection in urine samples, with recoveries from 97.3 to 106% and relative standard deviations (RSD) less than 5%. Graphical abstract.
Collapse
Affiliation(s)
- Zhao Wang
- Pharmaceutical Analysis Division, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Shuting Li
- Pharmaceutical Analysis Division, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Chunyan Zhou
- Inorganic Chemistry Division, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Yingying Sun
- Pharmaceutical Analysis Division, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Hui Pang
- School of Preclinical Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530031, People's Republic of China
| | - Wei Liu
- Biopharmaceutics and Pharmacokinetics Division, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, People's Republic of China.
| | - Xinchun Li
- Pharmaceutical Analysis Division, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, People's Republic of China.
| |
Collapse
|
3
|
Miao Q, Bai YJ, Zhang JL, Li Y, Su ZZ, Yan L, Wang LL, Zou YG. Highly sensitive and rapid determination of azathioprine metabolites in whole blood lysate by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1136:121802. [PMID: 31809961 DOI: 10.1016/j.jchromb.2019.121802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 02/05/2023]
Abstract
Individualized therapy involves genetic test of drug metabolism, which provides information about the initial dose and therapeutic drug monitoring for adjusting the subsequent dose. Consequently, toxic side effects are expected to be minimized and therapeutic effects to be maximized. In this study, an ultra-performance liquid chromatography tandem mass spectrometry method that was specific, accurate and sensitive was developed to simultaneously determine azathioprine two metabolites, 6-thioguanine nucleotides (6-TGN) and 6-methyl-mercaptopurine riboside (6-MMPr) in the whole blood lysate. We precipitated the sample by trifluoroacetic acid under the protection of dithiothreitol, with 6-MMPr and 6-TGN being hydrolyzed to produce 6-methymercaptopurine and 6-thioguanine. In the chromatographic separation, Waters ACQUITY BEH C18 (2.1 × 100 mm, 1.7 μm) chromatographic column was applied and gradient elution was conducted with 0.02 mol/L ammonium acetate buffer (which contains 0.3% formic acid) and acetonitrile at a flow rate of 0.4 ml/min. Tandem mass spectrometry in multiple reaction monitoring mode was applied for detection via electrospray ionization source in positive ionization mode. The analyzing process lasted for no more than 2 min. The calibration curve for each metabolite fitted a least squares model (weighed 1/X) from 1.25 to 5000 ng/ml (r2 > 0.99). The ion pairs were detected as 6-MMP m/z 167.07 → 152.15, 6-TG m/z 168.06 → 134.13, and internal standard m/z 171.07 → 137.14. Under the guidance of FDA guidelines for bioanalytical method validation, we carried out validation and obtained satisfactory results. The method was successfully utilized for monitoring the concentrations of each metabolite from 65 affected patients who had received azathioprine maintenance therapy and achieved optimal results.
Collapse
Affiliation(s)
- Qiang Miao
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yang-Juan Bai
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Jun-Long Zhang
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yi Li
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Zhen-Zhen Su
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Lin Yan
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Lan-Lan Wang
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yuan-Gao Zou
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Hanko M, Švorc Ľ, Planková A, Mikuš P. Novel electrochemical strategy for determination of 6-mercaptopurine using anodically pretreated boron-doped diamond electrode. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
An enzymatic ratiometric fluorescence assay for 6-mercaptopurine by using MoS2 quantum dots. Mikrochim Acta 2018; 185:540. [DOI: 10.1007/s00604-018-3039-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022]
|
6
|
Preparation of strongly fluorescent water-soluble dithiothreitol modified gold nanoclusters coated with carboxychitosan, and their application to fluorometric determination of the immunosuppressive 6-mercaptopurine. Mikrochim Acta 2018; 185:400. [DOI: 10.1007/s00604-018-2933-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
|
7
|
Li AP, Peng JD, Zhou M, Zhang J. Resonance light scattering determination of 6-mercaptopurine coupled with HPLC technique. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 154:1-7. [PMID: 26479445 DOI: 10.1016/j.saa.2015.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 08/09/2015] [Accepted: 09/20/2015] [Indexed: 06/05/2023]
Abstract
A simple, fast, costless, sensitive and selective method of resonance light scattering coupled with HPLC was established for the determination of 6-mercaptopurine in human urine sample. In a Britton-Robinson buffer solution of pH5.5, the formation of coordination complex between 6-mercaptopurine and metal palladium (II) led to enhance the RLS intensity of the system. The RLS signal was detected by fluorescence detector at λ(ex)=λ(em)=315 nm. The analytical parameters were provided by the coupled system, the linear of 6-mercaptopurine response from 0.0615 to 2.40 μg L(-1) and the limit of detection (S/N=3) was 0.05 μg L(-1). The presented method has been applied to determine 6-mercaptopurine in human urine samples which obtained satisfactory results. Moreover, the reaction mechanism and possible reasons for enhancement of RLS were fully discussed.
Collapse
Affiliation(s)
- Ai Ping Li
- Chemistry and Chemical Engineering, Southwest University, Beibei District, Chongqing, PR China
| | - Jing Dong Peng
- Chemistry and Chemical Engineering, Southwest University, Beibei District, Chongqing, PR China.
| | - MingQiong Zhou
- Chemistry and Chemical Engineering, Southwest University, Beibei District, Chongqing, PR China
| | - Jin Zhang
- Chemistry and Chemical Engineering, Southwest University, Beibei District, Chongqing, PR China
| |
Collapse
|
8
|
Yuan Y, Wang Y, Liu S, Li Y, Duan R, Zhang H, Hu X. Fluorescence quenching and spectrophotometric methods for the determination of 6-mercaptopurine based on carbon dots. RSC Adv 2016. [DOI: 10.1039/c6ra07675k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A carbon dot-based fluorescence probe was designed for detecting 6-mercaptopurine (6-MP) via fluorescence quenching.
Collapse
Affiliation(s)
- Yusheng Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Yalan Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Shaopu Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Yuanfang Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Ruilin Duan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Hui Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Xiaoli Hu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|