1
|
Huynh HH, Barahona-Carrillo L, Moncrieffe D, Cowan DA, Forrest K, Becker JO, Emrick MA, Thomas A, Thevis M, Eichner D, Byers PH, Miller GD, Hoofnagle AN. A Novel High-Throughput Immunoaffinity LC-MS/MS Assay for P-III-NP and Other Fragments of Type III Procollagen in Human Serum. Drug Test Anal 2024. [PMID: 39462787 DOI: 10.1002/dta.3814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/16/2024] [Accepted: 09/22/2024] [Indexed: 10/29/2024]
Abstract
The amino-terminal propeptide of type III procollagen (P-III-NP) is used with IGF-I to detect the illicit use of growth hormone and to monitor growth hormone therapy. However, the only currently available assays for P-III-NP are immunoassays, which are not well harmonized. In addition, other fragments of type III procollagen may better evaluate collagen turnover. We aimed to develop a high-throughput assay using immunoaffinity enrichment coupled to ultra-high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) to quantify peptides belonging to three different regions of type III procollagen in human serum simultaneously. To facilitate higher throughput, we transferred the assay from microcentrifuge tubes to a 96-well plate format with partially automated pipetting. The method was linear (Pearson's R ≥ 0.994) over an estimated concentration range of 1.35-13.3 nM, 0.04-2.28 nM, and 0.26-5.1 nM for each surrogate peptide of P-III-NP, collagen degradation products, and the carboxyl-terminal propeptide, respectively. Intra-day and inter-day imprecision were both < 13.6%, and the results of robustness testing were also encouraging. The method was successfully applied to capillary blood samples obtained using Tasso+ microsampling devices. Modest correlation of P-III-NP concentration was observed between our new method and a WADA-approved immunoassay (N = 40, Pearson's R = 0.789) with a significant bias of -87.8%. Our method simultaneously quantifies four peptides belonging to three regions of type III procollagen in human serum. High bias between assays highlights the need for common higher-order calibrators or reference materials to help improve the comparability of results across laboratories.
Collapse
Affiliation(s)
- Huu-Hien Huynh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Lili Barahona-Carrillo
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Danielle Moncrieffe
- Drug Control Centre, Department of Analytical, Environmental and Forensic Science, King's College London, London, UK
- Department of Analytical, Environmental & Forensic Sciences, King's College London, London, UK
| | - David A Cowan
- Drug Control Centre, Department of Analytical, Environmental and Forensic Science, King's College London, London, UK
| | - Katrina Forrest
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Jessica O Becker
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Michelle A Emrick
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Andreas Thomas
- Center for Preventive Doping Research (ZePraeDo), Institute of Biochemistry, German Sport University, Cologne, Germany
| | - Mario Thevis
- Center for Preventive Doping Research (ZePraeDo), Institute of Biochemistry, German Sport University, Cologne, Germany
| | - Daniel Eichner
- Sport Medicine Research and Testing Laboratory, Salt Lake City, Utah, USA
| | - Peter H Byers
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Geoffrey D Miller
- Sport Medicine Research and Testing Laboratory, Salt Lake City, Utah, USA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washngton, USA
| |
Collapse
|
2
|
Mazzarino M, Al-Mohammed H, Al-Darwish SK, Salama S, Al-Kaabi A, Samsam W, Kraiem S, Botré F, Beotra A, Mohamed-Ali V, Al-Maadheed M. Liquid vs dried blood matrices: Application to longitudinal monitoring of androstenedione, testosterone, and IGF-1 by LC-MS-based techniques. J Pharm Biomed Anal 2024; 242:116007. [PMID: 38367516 DOI: 10.1016/j.jpba.2024.116007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Dried blood spots have recently been approved by the World Anti-Doping Agency as an alternative biological matrix for testing of doping substances. However, their use is limited to the detection of non-threshold compounds without a Minimum Reporting Level due to the numerous issues related to quantitative analyses and the limitation on testing capabilities of a haemolysed matrix. AIM In this study androstenedione, testosterone and IGF-1 were longitudinally monitored in four different blood matrices to evaluate the potential of liquid capillary blood as an alternative matrix for quantitative determination in doping control analysis. METHODOLOGY The analytical protocols developed to pretreat 20 μL of the blood matrices selected were based: i) for testosterone and androstenedione, on supported liquid extraction for liquid blood matrices, and on ultrasonication in the presence of methanol for dried blood matrices; ii) for IGF-1, proteins precipitation followed by evaporation of the supernatant was used to pretreat both liquid and dried blood matrices. The detection for all the target analytes was performed using liquid chromatography coupled to mass spectrometry. The analytical workflows, once optimized, were fully validated according to the requirements of World Anti-Doping Agency and ISO 17025 standard and used for the analysis of venous (serum) and capillary (liquid plasma and dried whole blood collected using either volumetric or non-volumetric devices) blood samples collected from 7 healthy subjects. RESULTS The validation results showed satisfactory performance as related to specificity, sensitivity, matrix effects, linearity, accuracy, and precision in all the blood matrices evaluated despite the limited volume of sample used. The analysis of the different blood matrices collected from the subjects showed non-significant differences between the levels of testosterone and androstenedione measured in dried (fixed volume collected) and liquid matrices. An acceptable underestimation (lower than 15 %) was observed in capillary plasma compared to venous serum. The testosterone/androstenedione ratio was similar in all the blood matrices considered (bias lower than 5 %), indicating this parameter was not affected by either the blood matrix or collection device selected. For IGF-1, the levels measured in liquid blood matrices differed significantly (bias higher than 20 %) from those measured in dried whole blood matrices, suggesting haemolyzed blood might represent a challenge for the determination of macromolecules, mainly due to the complexity of the whole blood matrix in comparison to plasma/serum. NOVELTY The outcomes of our study suggest that liquid capillary blood might open new avenues to blood microsampling in doping control field. It represents an efficient alternative to overcome the issues related to venous blood and dried blood spot sampling. Furthermore, it also allows greater frequency of blood sampling, with minor discomfort and without needing a phlebotomist, for analyses that can only be performed in blood samples, with an increased probability to detect and report Adverse Analytical Finding.
Collapse
Affiliation(s)
- Monica Mazzarino
- Anti-Doping Laboratory Qatar, Aspire Zone 54, Street 665, Doha, Qatar
| | - Hana Al-Mohammed
- Anti-Doping Laboratory Qatar, Aspire Zone 54, Street 665, Doha, Qatar
| | | | - Sofia Salama
- Anti-Doping Laboratory Qatar, Aspire Zone 54, Street 665, Doha, Qatar
| | - AlAnoud Al-Kaabi
- Anti-Doping Laboratory Qatar, Aspire Zone 54, Street 665, Doha, Qatar
| | - Waseem Samsam
- Anti-Doping Laboratory Qatar, Aspire Zone 54, Street 665, Doha, Qatar
| | - Suhail Kraiem
- Anti-Doping Laboratory Qatar, Aspire Zone 54, Street 665, Doha, Qatar
| | - Francesco Botré
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti 1, 00197, Italy; REDs - Research and Expertise on Doping in Sport, ISSUL - Institute of Sport Sciences, University of Lausanne, Synathlon - Quartier Centre, Lausanne 1015, Switzerland
| | - Alka Beotra
- Anti-Doping Laboratory Qatar, Aspire Zone 54, Street 665, Doha, Qatar
| | - Vidya Mohamed-Ali
- Anti-Doping Laboratory Qatar, Aspire Zone 54, Street 665, Doha, Qatar; Center of Metabolism and Inflammation, Division of Medicine, Royal Free Campus, University College London, Rowland Hill Road, London NW3 2PF, UK
| | - Mohammed Al-Maadheed
- Anti-Doping Laboratory Qatar, Aspire Zone 54, Street 665, Doha, Qatar; Center of Metabolism and Inflammation, Division of Medicine, Royal Free Campus, University College London, Rowland Hill Road, London NW3 2PF, UK.
| |
Collapse
|
3
|
Stacchini C, Botrè F, de la Torre X, Mazzarino M. Capillary blood as a complementary matrix for doping control purposes. Application to the definition of the individual longitudinal profile of IGF-1. J Pharm Biomed Anal 2023; 227:115274. [PMID: 36774791 DOI: 10.1016/j.jpba.2023.115274] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
We present a novel procedure to monitor the fluctuations of the levels of IGF-1 in capillary blood in the framework of doping control analysis. Being an endogenous hormone, direct methods are not applicable, so the most effective way to detect the intake of the exogenous hormone would be based on the longitudinal monitoring of the athlete. We have therefore followed the individual variability, in four subjects (two males and two females), of the levels of IGF-1 in capillary blood samples collected three times per day for five days, then once a week for at least two months. Analyses were performed by liquid chromatography coupled to tandem mass spectrometry following a bottom-up approach. The whole protocol, from the sample collection to the instrumental analysis, was validated according to the World Anti-Doping Agency's guidelines and ISO17025. The analytical protocol showed to be fit for purpose in terms of sensitivity (LOD 25 ng/mL and LOI 35 ng/mL), selectivity (no interferences were detected at the retention time of IGF-1 and the internal standard), and repeatability (CV<10%). The linearity was confirmed in the range of 50-1000 ng/mL (correlation coefficient R2 >0.995, with a % relative bias of the experimental concentration of the different calibrators used for the estimation of the linearity lower than 20% for the lowest level and than 15% for the other levels). Stability studies were also performed, also to establish the optimal conditions for transport and storage: samples were stable at 4 °C for up to 72 h and at -20 °C and -80 °C for up to three months. Our preliminary results indicate that, in all subjects, the levels of IGF-1 did not present significant circadian fluctuations and remained stable during the entire period of the study (2-3 months, depending on the subject). The stability over time of IGF-1 levels in capillary blood indicates the possibility of detecting the intake of the non-endogenous hormone based on a longitudinal approach, as it is modeled in the framework of the endocrinological module of the athlete biological passport.
Collapse
Affiliation(s)
- Carlotta Stacchini
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti 1, 00197 Rome, Italy; Dipartimento Chimica e Tecnologia del Farmaco "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00161 Rome, Italy
| | - Francesco Botrè
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti 1, 00197 Rome, Italy; REDs - Research and Expertise on Doping in Sport, ISSUL - Institute of Sport Sciences, University of Lausanne, Synathlon - Quartier Centre, 1015 Lausanne, Switzerland.
| | - Xavier de la Torre
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti 1, 00197 Rome, Italy
| | - Monica Mazzarino
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti 1, 00197 Rome, Italy
| |
Collapse
|
4
|
Simstich S, Züllig T, D'Aurizio F, Biasotto A, Colao A, Isidori AM, Lenzi A, Fauler G, Köfeler HC, Curcio F, Herrmann M. The impact of different calibration matrices on the determination of insulin-like growth factor 1 by high-resolution-LC-MS in acromegalic and growth hormone deficient patients. Clin Biochem 2023; 114:95-102. [PMID: 36849049 DOI: 10.1016/j.clinbiochem.2023.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/01/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
OBJECTIVES Calibration is an important source of variability in liquid chromatography mass spectrometry (LC-MS) methods for insulin-like growth factor 1 (IGF-1). This study investigated the impact of different calibrator matrices on IGF-1 measurements by LC-MS. Moreover, the comparability of immunoassays and LC-MS was assessed. DESIGN & METHODS Calibrators from 12.5 to 2009 ng/ml were prepared by spiking WHO international Standard (ID 02/254 NIBSC, UK) into the following matrices: native human plasma, fresh charcoal-treated human plasma (FCTHP), old charcoal-treated human plasma, deionized water, bovine serum albumin (BSA), and rat plasma (RP). A validated in-house LC-MS method was calibrated repeatedly with these calibrators. Then, serum samples from 197 growth hormone excess and deficiency patients were analysed with each calibration. RESULTS The seven calibration curves had different slopes leading to markedly different patient results. The largest differences in IGF-1 concentration from the median (interquartile range) was observed with the calibrator in water and the calibrator in RP (336.4 [279.6-417.0] vs. 112.5 [71.2-171.2], p < 0.001). The smallest difference was observed with calibrators in FCTHP and BSA (141.8 [102.0-198.5] vs. 127.9 [86.9-186.0], p < 0.049). Compared to LC-MS with calibrators in FCTHP, immunoassays showed relevant proportional bias (range: -43% to -68%), constant bias (range: 22.84 to 57.29 ng/ml) and pronounced scatter. Comparing the immunoassays with each other revealed proportional bias of up to 24%. CONCLUSIONS The calibrator matrix is critical for the measurement of IGF-1 by LC-MS. Regardless of the calibrator matrix, LC-MS shows poor agreement with immunoassays. Also, the agreement between different immunoassays is variable.
Collapse
Affiliation(s)
- Sebastian Simstich
- Clinical Institute of Medical and Chemical Laboratory Diagnosis, Medical University of Graz, Austria
| | - Thomas Züllig
- Core Facility Mass Spectrometry, Medical University of Graz, Austria; Institute of Molecular Biosciences, University of Graz, Austria
| | - Federica D'Aurizio
- Department of Laboratory Medicine, Institute of Clinical Pathology, Academic Hospital of Udine, Italy
| | | | - Annamaria Colao
- Department of Clinical Medicine and Surgery, Section of Endocrinology, University Federico II, Naples, Italy; UNESCO Chair for Health Education and Sustainable Development, University Federico II, Naples, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Günter Fauler
- Clinical Institute of Medical and Chemical Laboratory Diagnosis, Medical University of Graz, Austria
| | - Harald C Köfeler
- Core Facility Mass Spectrometry, Medical University of Graz, Austria
| | - Francesco Curcio
- Department of Laboratory Medicine, Institute of Clinical Pathology, Academic Hospital of Udine, Italy; Department of Medicine, University of Udine, Italy
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnosis, Medical University of Graz, Austria.
| |
Collapse
|
5
|
Development and single laboratory validation of a targeted liquid chromatography-triple quadrupole mass spectrometry-based method for the determination of insulin like growth factor-1 in different types of milk samples. Food Chem X 2022; 13:100271. [PMID: 35499009 PMCID: PMC9040010 DOI: 10.1016/j.fochx.2022.100271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 11/22/2022] Open
Abstract
Bovine insulin growth factor 1 (IGF-1) was estimated in different cow milk samples. In house validation of a LC-MS/MS IGF-1 investigation method in milks obtained by different technological treatments. Development of a sample treatment for the extraction of IGF-1 from different types of cow milk. IGF-1 level in cow’s milk was not dependent form milk technological processing.
A simple and reliable targeted liquid chromatography-electrospray-tandem mass spectrometry (LC-MS/MS) method was developed and validated through the selection of two biomarker peptides for the identification and determination of bovine insulin like growth factor-1 (IGF-1) in milk samples. Two urea-based sample extraction procedures were tested. The validation results provided detection limits at the 1–5 ng IGF-1/mL level as a function of the milk matrix, precision ranged from 3 to 8% and the method accuracy in the different milk matrices was assured. Finally, IGF-1 was measured in milk samples obtained by treatment with eleven different technological processes: IGF-1 concentrations were spread over a wide range from 11.2 ± 0.3 ng/mL to 346 ± 8 ng/mL with a median of 57.0 ± 0.2 ng/mL. The highest amount of IGF-1 was found in fresh whole milk samples and no significant correlation was found between the total milk protein content and the IGF-1 concentration level.
Collapse
|
6
|
Reverter-Branchat G, Segura J, Pozo OJ. On the road of dried blood spot sampling for antidoping tests: Detection of GHRP-2 abuse. Drug Test Anal 2020; 13:510-522. [PMID: 33197153 DOI: 10.1002/dta.2975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Dried blood spots (DBSs) sampling is gaining support by the antidoping community because of simplicity and cost-effective characteristics, especially in collection, transport, and storage. Nevertheless, DBS applicability demands specific studies for each of the analytes proposed for testing. Here, GHRP-2 has been selected as a representing member of the growth hormone-releasing peptides (GHRPs) family to provide further evidence of DBS suitability for GHRPs abuse detection in sport testing. An analytical procedure to extract GHRP-2 and its main metabolite (AA-3) from DBS and to detect them by liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed. The method has been validated for the detection of GHRP-2. Specificity and identification capabilities have been assessed in agreement with antidoping guidelines. The low AA-3 levels found in DBS samples prevented its effective application for the determination of this metabolite. The limit of detection (LoD) for GHRP-2 has been established at 50 pg/ml. Long-term stability (>2 years) has been confirmed. The procedure has been successfully applied to actual DBS samples from an administration study with a single intravenous dose of GHRP-2 (100 μg) being detected up to 4 h after drug injection. GHRP-2 concentrations have been higher in venous blood DBS than in capillary blood DBS. Despite the observed differences, a similar detection window has been achieved independently of the type of blood used. In summary, this study provides specific evidence supporting DBS usefulness to detect GHRP-2, and potentially other GHRPs family members, for antidoping tests.
Collapse
Affiliation(s)
- Gemma Reverter-Branchat
- Integrative Pharmacology and Systems Neuroscience Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jordi Segura
- Integrative Pharmacology and Systems Neuroscience Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Catalonian Antidoping Laboratory, Doping Control Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Oscar J Pozo
- Integrative Pharmacology and Systems Neuroscience Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| |
Collapse
|
7
|
Luginbühl M, Gaugler S. Dried blood spots for anti-doping: Why just going volumetric may not be sufficient. Drug Test Anal 2020; 13:69-73. [PMID: 33201591 DOI: 10.1002/dta.2977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
The perspective discusses quantitative DBS analysis for anti-doping testing in an athletic population and why only using volumetric sampling for this subgroup might not be enough. It presents examples to highlight where HCT variations occur, followed by a whole blood to plasma ratio and an HCT extraction bias discussion. Finally, options to correct for the HCT bias are presented.
Collapse
|
8
|
Solheim SA, Jessen S, Mørkeberg J, Thevis M, Dehnes Y, Eibye K, Hostrup M, Nordsborg NB. Single‐dose administration of clenbuterol is detectable in dried blood spots. Drug Test Anal 2020; 12:1366-1372. [DOI: 10.1002/dta.2872] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/08/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Sara Amalie Solheim
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
- Department of Sport Anti Doping Denmark Brøndby Denmark
| | - Søren Jessen
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | | | - Mario Thevis
- Institute of Biochemistry / Center for Preventive Doping Research German Sport University Cologne Cologne Germany
| | - Yvette Dehnes
- Norwegian Doping Control Laboratory, Department of Pharmacology Oslo University Hospital Oslo Norway
| | - Kasper Eibye
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - Morten Hostrup
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | | |
Collapse
|
9
|
Use of capillary dried blood for quantification of intact IGF-I by LC–HRMS for antidoping analysis. Bioanalysis 2020; 12:737-752. [DOI: 10.4155/bio-2020-0013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: IGF-I is used as a biomarker to detect Growth Hormone doping in athletes’ blood samples. Objective: Our aim was to develop and validate a fast, high-throughput and accurate quantification of intact IGF-I from volumetric absorptive microsampling (VAMS) dried blood using LC coupled to high resolution mass spectrometry (LC–HRMS). Methodology & results: IGF-I was extracted from the VAMS, released from its binding proteins, concentrated using microelution SPE and analyzed by LC–HRMS. The method was successfully validated in accordance with the World Anti-Doping Agency's requirements. Subsequently, IGF-I measurements from capillary dried blood and serum were compared. Conclusion: The combination of VAMS, microelution SPE and LC–HRMS is a promising strategy applicable to IGF-I quantification in athletes’ samples.
Collapse
|
10
|
Corcuff JB, Ducint D, Brossaud J. What do you need to know about mass spectrometry? A brief guide for endocrinologists. ANNALES D'ENDOCRINOLOGIE 2020; 81:118-123. [PMID: 32340850 DOI: 10.1016/j.ando.2020.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/06/2020] [Indexed: 10/24/2022]
Abstract
In routine hormonology, liquid chromatography mass spectrometry (LCMS) is now an established technique for androgen, urinary cortisol and metanephrine assay. It has the undeniable advantage of great analytical specificity, but with sensitivity that clearly depends on financial investment in a very high-end spectrometer. We describe the general principles of LCMS and the routine applications so far developed in hormonology. The purpose is to familiarise endocrinologists with the techniques under development and their pros and cons.
Collapse
Affiliation(s)
- Jean-Benoît Corcuff
- Laboratoire d'hormonologie, hôpital Haut-Lévêque, CHU de Bordeaux, 33604 Pessac, France; Nutrition et neurobiologie intégrée, UMR 1286, université de Bordeaux, 33076 Bordeaux, France; Groupe de biologie spécialisée, societé française de medecine nucléaire, 5, rue Ponscarme 75013, Paris, France.
| | - Dominique Ducint
- Plateau technique de mesures physiques, hôpital Pellegrin, CHU de Bordeaux, 33600 Bordeaux, France.
| | - Julie Brossaud
- Laboratoire d'hormonologie, hôpital Haut-Lévêque, CHU de Bordeaux, 33604 Pessac, France; Nutrition et neurobiologie intégrée, UMR 1286, université de Bordeaux, 33076 Bordeaux, France; Groupe de biologie spécialisée, societé française de medecine nucléaire, 5, rue Ponscarme 75013, Paris, France.
| |
Collapse
|
11
|
Marchand A, Roulland I, Semence F, Audran M. Volumetric Absorptive Microsampling (VAMS) technology for IGF-1 quantification by automated chemiluminescent immunoassay in dried blood. Growth Horm IGF Res 2020; 50:27-34. [PMID: 31835105 DOI: 10.1016/j.ghir.2019.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/23/2019] [Accepted: 12/06/2019] [Indexed: 01/06/2023]
Abstract
For medical diagnostics and anti-doping analyses, insulin-like growth factor 1 (IGF-1) can be measured in serum using automated chemiluminescent immunoassays. The aim of this study was to assess the feasibility of using dried blood instead of serum to measure IGF-1 concentrations with an automated IGF-1 immunoassay and to evaluate if IGF-1 concentrations from dried capillary blood and serum were comparable. Blood samples (venous blood and capillary blood obtained from the arm skin using a device from Seventh Sense Biosystem) were collected with 20 μL Volumetric Absorptive Micro samplers (VAMS) (Mitra®, Neoteryx). These samplers offer the possibility of collecting a fixed volume of blood without perturbation by hematocrit. Starting from dried blood, an aqueous desorption in 0.9% NaCl was efficient to release IGF-1. The solution was directly analyzed on the automated IGF-1 immunoassay. IGF-1 concentrations after extraction from VAMS were lower than in serum (due to the dilution performed for the elution of IGF-1) but measurable for serum concentrations over 50 ng/mL. In addition, IGF-1 on VAMS was stable for at least one month at room temperature. Following adjustment for dilution, serum and dried blood IGF-1 concentrations were of the same order. However lower concentrations were obtained from the capillary blood in particular for high serum concentrations. In conclusion, a micro volume of dried capillary blood could be used to quantify IGF-1 with an automated chemiluminescent immunoassay. However, more data are needed to establish specific IGF-1 reference concentrations using dried capillary blood instead of serum.
Collapse
Affiliation(s)
- A Marchand
- Analysis Department, Agence Française de Lutte contre le Dopage (AFLD), 143 avenue Roger Salengro, 92290 Châtenay-Malabry, France.
| | - I Roulland
- Analysis Department, Agence Française de Lutte contre le Dopage (AFLD), 143 avenue Roger Salengro, 92290 Châtenay-Malabry, France
| | - F Semence
- Analysis Department, Agence Française de Lutte contre le Dopage (AFLD), 143 avenue Roger Salengro, 92290 Châtenay-Malabry, France
| | - M Audran
- Analysis Department, Agence Française de Lutte contre le Dopage (AFLD), 143 avenue Roger Salengro, 92290 Châtenay-Malabry, France
| |
Collapse
|
12
|
Development of an UPLC/MS–MS method for quantification of intact IGF-I from human serum. Bioanalysis 2020; 12:53-65. [DOI: 10.4155/bio-2019-0234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: Developing LC–MS methods for biomolecules is often challenging due to issues with molecular size and complexity, nonspecific binding, protein binding, solubility and sensitivity. As a result, complex sample preparation workflows, including immune-affinity and/or protein digestion and lengthy analysis potentially using nano-flow LC, may be needed to achieve the required sensitivity. This work aims to provide a simple, sensitive, fast and robust method for quantification of intact IGF-I from human serum using UPLC–MS/MS. Methods: IGF-I serum samples were denatured with sodium dodecyl sulfate, followed by organic protein precipitation to effectively disrupt protein binding and subsequent SPE of the resulting supernatant for sample cleanup and enrichment prior to LC–MS/MS analysis. Separation was performed on an analytical scale LC using a reversed-phase column containing <2 μm solid core particle followed by detection on a tandem quadrupole MS in multiple reaction monitoring mode. Results: Intact IGF-I was quantified from serum using the method described above at a LLOQ of 5 ng/ml with a dynamic range 5–1000 ng/ml (r2>0.99) and mean accuracy of 101.76%. Accuracies for quality control samples were between 93.9–107.7% with RSD <7%. Conclusion: The analytical sensitivity, linear dynamic range and excellent reproducibility of this method reliably measures endogenous and elevated serum IGF-I levels, demonstrating its utility in discovery, bioanalysis and clinical research.
Collapse
|
13
|
Development of two complementary LC–HRMS methods for analyzing sotatercept in dried blood spots for doping controls. Bioanalysis 2019; 11:923-940. [DOI: 10.4155/bio-2018-0313] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: sotatercept is a therapeutic Fc-fusion protein with erythropoiesis-stimulating activity. Due to a potential abuse of the drug by athletes in professional sports, a sensitive detection method is required. In sports drug testing, alternative matrices such as dried blood spots (DBS) are gaining increasing attention as they can provide several advantages over conventional matrices. Materials & methods: Herein, two complementary LC–high-resolution mass spectrometry (HRMS) detection methods for sotatercept from DBS, an initial testing procedure (ITP) and a confirmation procedure (CP) were developed and validated for the first time. Both methods comprise an ultrasonication-assisted extraction, affinity enrichment, proteolytic digestion and HRMS detection. Results & conclusion: For the multianalyte ITP, artificial samples fortified with sotatercept, luspatercept and bimagrumab, and authentic specimens containing bimagrumab were successfully analyzed as proof-of-concept. The validated detection methods for sotatercept are fit for purpose and the ITP was shown to be suitable for the detection of novel IgG-based pharmaceuticals in doping control DBS samples.
Collapse
|
14
|
Reverter-Branchat G, Ventura R, Ezzel Din M, Mateus J, Pedro C, Segura J. Detection of erythropoiesis-stimulating agents in a single dried blood spot. Drug Test Anal 2018; 10:1496-1507. [DOI: 10.1002/dta.2418] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/18/2018] [Accepted: 05/28/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Gemma Reverter-Branchat
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program; IMIM - Hospital del Mar Medical Research Institute; Barcelona Spain
| | - Rosa Ventura
- Catalonian Antidoping Laboratory, Doping Control Research Group, Neurosciences Research Programme; IMIM - Hospital del Mar Medical Research Institute; Barcelona Spain
| | - Mohammed Ezzel Din
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program; IMIM - Hospital del Mar Medical Research Institute; Barcelona Spain
| | - Julián Mateus
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program; IMIM - Hospital del Mar Medical Research Institute; Barcelona Spain
| | - Carme Pedro
- Department of Hematology; Hospital del Mar-IMIM; Barcelona Spain
| | - Jordi Segura
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program; IMIM - Hospital del Mar Medical Research Institute; Barcelona Spain
- Catalonian Antidoping Laboratory, Doping Control Research Group, Neurosciences Research Programme; IMIM - Hospital del Mar Medical Research Institute; Barcelona Spain
| |
Collapse
|
15
|
Glu-C, an alternative digestive enzyme for the quantitative LC–MS/MS analysis of an IgG-based antibody biotherapeutic. Bioanalysis 2018; 10:997-1007. [DOI: 10.4155/bio-2017-0259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: LC–MS/MS bottom-up quantitation of proteins has become increasingly popular with trypsin as the most commonly used protease. However, trypsin does not always yield suitable surrogate peptides. An alternative enzyme, Glu-C, was used to generate surrogate peptides for quantifying a bispecific IgG1 biotherapeutic antibody in preclinical matrices. Materials and methods: IgG1 was quantified by pellet digestion using an Acquity UPLC coupled with a Xevo TQ-S mass spectrometer. Results: Two generic LC–MS/MS methods (heavy and light chain) were developed which afforded acceptable precision and accuracy, and an lower limit of quantitation of 1 μg/ml in three preclinical matrices. A small nonsignificant bias was observed when cynomolgus serum LC–MS/MS results were compared with electrochemiluminescent immunoassay data. Conclusion: Glu-C was successfully used as an alternative digestion enzyme for bottom-up quantitation of an IgG1 in matrices from multiple preclinical species, with good agreement with electrochemiluminescent immunoassay data.
Collapse
|
16
|
Li H, Han J, Pan J, Liu T, Parker CE, Borchers CH. Current trends in quantitative proteomics - an update. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:319-341. [PMID: 28418607 DOI: 10.1002/jms.3932] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/28/2017] [Accepted: 04/06/2017] [Indexed: 05/11/2023]
Abstract
Proteins can provide insights into biological processes at the functional level, so they are very promising biomarker candidates. The quantification of proteins in biological samples has been routinely used for the diagnosis of diseases and monitoring the treatment. Although large-scale protein quantification in complex samples is still a challenging task, a great amount of effort has been made to advance the technologies that enable quantitative proteomics. Seven years ago, in 2009, we wrote an article about the current trends in quantitative proteomics. In writing this current paper, we realized that, today, we have an even wider selection of potential tools for quantitative proteomics. These tools include new derivatization reagents, novel sampling formats, new types of analyzers and scanning techniques, and recently developed software to assist in assay development and data analysis. In this review article, we will discuss these innovative methods, and their current and potential applications in proteomics. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- H Li
- University of Victoria - Genome British Columbia Proteomics Centre, University of Victoria, Victoria, BC, V8Z 7X8, Canada
| | - J Han
- University of Victoria - Genome British Columbia Proteomics Centre, University of Victoria, Victoria, BC, V8Z 7X8, Canada
| | - J Pan
- University of Victoria - Genome British Columbia Proteomics Centre, University of Victoria, Victoria, BC, V8Z 7X8, Canada
| | - T Liu
- University of Victoria - Genome British Columbia Proteomics Centre, University of Victoria, Victoria, BC, V8Z 7X8, Canada
| | - C E Parker
- University of Victoria - Genome British Columbia Proteomics Centre, University of Victoria, Victoria, BC, V8Z 7X8, Canada
| | - C H Borchers
- University of Victoria - Genome British Columbia Proteomics Centre, University of Victoria, Victoria, BC, V8Z 7X8, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Proteomics Centre, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, Jewish General Hospital, Montreal, Quebec, H3T 1E2, Canada
| |
Collapse
|
17
|
Opening the toolbox of alternative sampling strategies in clinical routine: A key-role for (LC-)MS/MS. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.01.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Reverter-Branchat G, Bosch J, Vall J, Farré M, Papaseit E, Pichini S, Segura J. Determination of Recent Growth Hormone Abuse Using a Single Dried Blood Spot. Clin Chem 2016; 62:1353-60. [DOI: 10.1373/clinchem.2016.257592] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/23/2016] [Indexed: 12/28/2022]
Abstract
Abstract
BACKGROUND
Although it is being increasingly applied, blood collection for drug testing in sport presents some logistic issues that complicate full applicability on a large scale. The use of dried blood spots (DBS) could benefit compliant blood testing considerably owing to its simplicity, minimal invasiveness, analyte stability, and reduced costs. The aim of this study was to evaluate the applicability of DBS to the methodology approved by the World Anti-Doping Agency (WADA) for detection of doping by recombinant human growth hormone (rhGH) in serum.
METHODS
A protocol for a single DBS analysis using the hGH isoforms differential immunoassays (kit 1 and kit 2) was developed and validated. A clinical study with healthy volunteers injected for 3 consecutive days with a low subcutaneous dose (0.027 mg · kg−1 · day−1 · person−1) of rhGH was conducted. Finger prick DBS and paired-time serum samples from arm venipuncture were compared.
RESULTS
The analysis of the DBS-based protocol indicated that with only a single blood spot it was possible to detect positivity for growth hormone abuse. In spite of the low rhGH dose administered and independently of the kit used, the window of detection for DBS was confirmed in all analyzed samples up to 8 h after rhGH administration and extended up to 12 h in 50% of the cases. Serum positivity was detected in all studied samples for 12 h after administration.
CONCLUSIONS
These results support the usefulness of DBS as a biological matrix for testing recent growth hormone abuse.
Collapse
Affiliation(s)
- Gemma Reverter-Branchat
- Bioanalysis Research Group, Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Jaume Bosch
- Bioanalysis Research Group, Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Jessica Vall
- Bioanalysis Research Group, Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Magí Farré
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Department of Pharmacology, Therapeutics and Toxicology and Department of Psychiatry, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès (Bellaterra), Spain
- Clinical Pharmacology Unit. Hospital Universitari Germans Trias i Pujol-IGTP, Badalona, Spain
| | - Esther Papaseit
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Department of Pharmacology, Therapeutics and Toxicology and Department of Psychiatry, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès (Bellaterra), Spain
- Clinical Pharmacology Unit. Hospital Universitari Germans Trias i Pujol-IGTP, Badalona, Spain
| | | | - Jordi Segura
- Bioanalysis Research Group, Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| |
Collapse
|
19
|
Chambers AG, Percy AJ, Yang J, Borchers CH. Multiple Reaction Monitoring Enables Precise Quantification of 97 Proteins in Dried Blood Spots. Mol Cell Proteomics 2015; 14:3094-104. [PMID: 26342038 DOI: 10.1074/mcp.o115.049957] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Indexed: 01/19/2023] Open
Abstract
The dried blood spot (DBS) methodology provides a minimally invasive approach to sample collection and enables room-temperature storage for most analytes. DBS samples have successfully been analyzed by liquid chromatography multiple reaction monitoring mass spectrometry (LC/MRM-MS) to quantify a large range of small molecule biomarkers and drugs; however, this strategy has only recently been explored for MS-based proteomics applications. Here we report the development of a highly multiplexed MRM assay to quantify endogenous proteins in human DBS samples. This assay uses matching stable isotope-labeled standard peptides for precise, relative quantification, and standard curves to characterize the analytical performance. A total of 169 peptides, corresponding to 97 proteins, were quantified in the final assay with an average linear dynamic range of 207-fold and an average R(2) value of 0.987. The total range of this assay spanned almost 5 orders of magnitude from serum albumin (P02768) at 18.0 mg/ml down to cholinesterase (P06276) at 190 ng/ml. The average intra-assay and inter-assay precision for 6 biological samples ranged from 6.1-7.5% CV and 9.5-11.0% CV, respectively. The majority of peptide targets were stable after 154 days at storage temperatures from -20 °C to 37 °C. Furthermore, protein concentration ratios between matching DBS and whole blood samples were largely constant (<20% CV) across six biological samples. This assay represents the highest multiplexing yet achieved for targeted protein quantification in DBS samples and is suitable for biomedical research applications.
Collapse
Affiliation(s)
- Andrew G Chambers
- From the ‡University of Victoria - Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101 - 4464 Markham St., Victoria, BC V8Z 7X8, Canada
| | - Andrew J Percy
- From the ‡University of Victoria - Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101 - 4464 Markham St., Victoria, BC V8Z 7X8, Canada
| | - Juncong Yang
- From the ‡University of Victoria - Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101 - 4464 Markham St., Victoria, BC V8Z 7X8, Canada
| | - Christoph H Borchers
- From the ‡University of Victoria - Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101 - 4464 Markham St., Victoria, BC V8Z 7X8, Canada; §Department of Biochemistry and Microbiology, University of Victoria, Petch Building Room 207, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada
| |
Collapse
|
20
|
LC–MS-based quantification of intact proteins: perspective for clinical and bioanalytical applications. Bioanalysis 2015; 7:1943-58. [DOI: 10.4155/bio.15.113] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bioanalytical LC–MS for protein quantification is traditionally based on enzymatic digestion of the target protein followed by absolute quantification of a specific signature peptide relative to a stable-isotope labeled analog. The enzymatic digestion, nonetheless, limits rapid method development, sample throughput and turnaround time, and, moreover, makes that essential information regarding the biological function of the intact protein is lost. The recent advancements in high-resolution MS instrumentation and improved sample preparation techniques dedicated to protein clean-up raise the question to what extent LC–MS can be applied for quantitative bioanalysis of intact proteins. This review provides an overview of current and potential applications of LC–MS for intact protein quantification as well as the main limitations and challenges for broad application.
Collapse
|