1
|
Mandal D, Dey I, Ghosh C. Development of a disposable paper-based thin film solid-phase microextraction sampling kit to quantify ketone body. RSC Adv 2024; 14:32230-32238. [PMID: 39399252 PMCID: PMC11469451 DOI: 10.1039/d4ra05907g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
Diabetes ketoacidosis (DKA) is a life-threatening complication and requires immediate medical attention in the case of diabetes subjects, especially in the case of type 1 diabetes mellitus. In the condition of DKA, the body produces an excess amount of ketone bodies after unregulated fat degradation, causing blood to become acidic and hampering the regular metabolic activities of the body. The current diagnostic technique for DKA condition is based on monitoring ketone bodies, especially β-hydroxybutyric acid, from human urine and blood samples. The detection of serum ketone bodies in pathology is sometimes limited due to false positive results and the lack of standardization for precise quantification of analytes. In this study, a paper-based patch operating on the thin film solid-phase microextraction (TF-SPME) principle was developed and it was coupled with gas chromatography-mass spectrometry for simple quantification of β-hydroxybutyric acid (BHB) ketone body from a phosphate-buffered saline matrix. To fabricate the paper-based TF-SPME patches, a regular A4 sheet paper sheet was utilized as the substrate and uniform coating by multiwalled carbon nanotubes (MWCNT), polydimethylsiloxane (PDMS) and divinyl benzene (DVB) compounds was performed with an automatic film applicator. The 70 μm paper-based coated sheet was trimmed into 4 cm × 1 cm dimension pieces to obtain multiple patches from a single sheet. Extraction of the BHB ketone body into the closed vials was performed by exploiting the individual DVB/PDMS and DVB/CNT/PDMS paper patches followed by desorption with acetonitrile before quantification by gas chromatography-mass spectrometry analysis. Our study showed that the BHB extraction efficiency of DVB/PDMS-coated patches was higher than that of DVB/CNT/PDMS. The outcome showed a good linearity (R 2 = 0.99) within the 500-20 000 ng mL-1 concentration range of BHB by paper-based DVB/PDMS patches. This study demonstrated the feasibility of utilizing simple, cost-effective paper-based disposable TF-SPME patches as a sampling kit for future screening of diabetes ketoacidosis without the need for prolonged traditional sample preparation in pathology.
Collapse
Affiliation(s)
- Debsmita Mandal
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
| | - Indrayani Dey
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
| | - Chiranjit Ghosh
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka 576104 India
- Harvard Medical School 25 Shattuck Street Boston 02115 MA USA
| |
Collapse
|
2
|
Leszczyńska D, Hallmann A, Treder N, Bączek T, Roszkowska A. Recent advances in the use of SPME for drug analysis in clinical, toxicological, and forensic medicine studies. Talanta 2024; 270:125613. [PMID: 38159351 DOI: 10.1016/j.talanta.2023.125613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Solid-phase microextraction (SPME) has gained attention as a simple, fast, and non-exhaustive extraction technique, as its unique features enable its use for the extraction of many classes of drugs from biological matrices. This sample-preparation approach consolidates sampling and sample preparation into a single step, in addition to providing analyte preconcentration and sample clean-up. These features have helped SPME become an integral part of several analytical protocols for monitoring drug concentrations in human matrices in clinical, toxicological, and forensic medicine studies. Over the years, researchers have continued to develop the SPME technique, resulting in the introduction of novel sorbents and geometries, which have resulted in improved extraction efficiencies. This review summarizes developments and applications of SPME published between 2016 and 2022, specifically in relation to the analysis of central nervous system drugs, drugs used to treat cardiovascular disorders and bacterial infections, and drugs used in immunosuppressive and anticancer therapies.
Collapse
Affiliation(s)
- Dagmara Leszczyńska
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Gdańsk, 80-211, Poland
| | - Anna Hallmann
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Gdańsk, 80-211, Poland
| | - Natalia Treder
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, 80-416, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, 80-416, Poland
| | - Anna Roszkowska
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, 80-416, Poland.
| |
Collapse
|
3
|
Kumar A, Sharma C. Advances in the analytical methods for the determination of fluorinated aromatic carboxylic acids in aqueous matrices: A review. J Sep Sci 2021; 45:78-93. [PMID: 34816578 DOI: 10.1002/jssc.202100794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 11/07/2022]
Abstract
Fluorobenzoic acids are critically important chemical tracers in hydrothermal, geothermal, leaching, and oilfield applications. Particularly in oilfield applications, these tracers are used to investigate fluid flow paths between injector wells and producer wells, providing valuable information about the enhanced oil recovery process of the oil reservoirs. The detection limit of tracers is a vital subject in field reservoir work because the amount of chemical tracer that must be injected into the injector well is directly related to the amount detected at the producer well after migration and diffusion. The popularity of fluorinated benzoic acids as the tracers is due to their non-toxicity over radioactive tracers and low detection limit, which is determined using analytical techniques. This review focuses on the improvements/developments in extraction techniques such as solid-phase extraction and determination techniques such as gas chromatography coupled with mass spectrometry, liquid chromatography with mass spectrometry, isotope dilution gas chromatography-mass spectrometry, high-performance liquid chromatography, ion chromatography coupled with electrospray mass spectrometry, and so on for the analysis of fluorinated benzoic acids to achieve the lowest possible limit of concentration.
Collapse
Affiliation(s)
- Anuj Kumar
- GC-MS Laboratory, Department of Paper Technology, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, India
| | - Chhaya Sharma
- GC-MS Laboratory, Department of Paper Technology, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, India
| |
Collapse
|
4
|
Abstract
Metabolite profiling is an indispensable part of drug discovery and development, enabling a comprehensive understanding of the drug's metabolic behavior. Liquid chromatography-mass spectrometry facilitates metabolite profiling by reducing sample complexity and providing high sensitivity. This review discusses the in vivo metabolite profiling involving LC-MS/MS and the utilization of QTOF, QQQ mass analyzers with a particular emphasis on a mass filter. Further, a summary of sample extraction procedures in biological matrices such as plasma, urine, feces, serum and hair as in vivo samples are outlined. toward the end, we present 15 case studies in biological matrices and their LC-MS/MS conditions to understand the metabolic disposition.
Collapse
|
5
|
Benefits of Innovative and Fully Water-Compatible Stationary Phases of Thin-Film Microextraction (TFME) Blades. Molecules 2021; 26:molecules26154413. [PMID: 34361565 PMCID: PMC8347298 DOI: 10.3390/molecules26154413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022] Open
Abstract
Octadecyl (C18) groups are arguably the most popular ligands used for preparation of solid phase microextraction (SPME) devices. However, conventional C18-bonded silica particles are not fully compatible with the nearly 100% aqueous composition of typical biological samples (e.g., plasma, saliva, or urine). This study presents the first evaluation of thin-film SPME devices coated with special water-compatible C18-bonded particles. Device performance was assessed by extracting a mixture of 30 model compounds that exhibited various chemical structures and properties, such as hydrophobicity. Additionally, nine unique compositions of desorption solvents were tested. Thin-film SPME devices coated with C18-bonded silica particles with polar end-capping groups (10 µm) were compared with conventional trimethylsilane end-capped C18-bonded silica particles of various sizes (5, 10, and 45 µm) and characteristics. Polar end-capped particles provided the best extraction efficacy and were characterized by the strongest correlations between the efficacy of the extraction process and the hydrophobicity of the analytes. The results suggest that the original features of octadecyl ligands are best preserved in aqueous conditions by polar end-capped particles, unlike with conventional trimethylsilane end-capped particles that are currently used to prepare SPME devices. The benefits associated with this improved type of coating encourage further implementation of microextractraction as greener alternative to the traditional sample preparation methods.
Collapse
|
6
|
Portable stir membrane device for on-site environmental sampling and extraction. J Chromatogr A 2019; 1606:360359. [DOI: 10.1016/j.chroma.2019.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 01/12/2023]
|
7
|
Seidi S, Tajik M, Baharfar M, Rezazadeh M. Micro solid-phase extraction (pipette tip and spin column) and thin film solid-phase microextraction: Miniaturized concepts for chromatographic analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.036] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
8
|
Vasiljevic T, Singh V, Pawliszyn J. Miniaturized SPME tips directly coupled to mass spectrometry for targeted determination and untargeted profiling of small samples. Talanta 2019; 199:689-697. [DOI: 10.1016/j.talanta.2019.03.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/02/2019] [Accepted: 03/02/2019] [Indexed: 10/27/2022]
|
9
|
Filipiak W, Bojko B. SPME in clinical, pharmaceutical, and biotechnological research – How far are we from daily practice? Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
10
|
Reyes-Garcés N, Gionfriddo E. Recent developments and applications of solid phase microextraction as a sample preparation approach for mass-spectrometry-based metabolomics and lipidomics. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.01.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Untargeted screening of phase I metabolism of combretastatin A4 by multi-tool analysis. Talanta 2018; 182:22-31. [DOI: 10.1016/j.talanta.2018.01.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/14/2022]
|
12
|
Boyacı E, Bojko B, Reyes-Garcés N, Poole JJ, Gómez-Ríos GA, Teixeira A, Nicol B, Pawliszyn J. High-throughput analysis using non-depletive SPME: challenges and applications to the determination of free and total concentrations in small sample volumes. Sci Rep 2018; 8:1167. [PMID: 29348436 PMCID: PMC5773572 DOI: 10.1038/s41598-018-19313-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/27/2017] [Indexed: 01/03/2023] Open
Abstract
In vitro high-throughput non-depletive quantitation of chemicals in biofluids is of growing interest in many areas. Some of the challenges facing researchers include the limited volume of biofluids, rapid and high-throughput sampling requirements, and the lack of reliable methods. Coupled to the above, growing interest in the monitoring of kinetics and dynamics of miniaturized biosystems has spurred the demand for development of novel and revolutionary methodologies for analysis of biofluids. The applicability of solid-phase microextraction (SPME) is investigated as a potential technology to fulfill the aforementioned requirements. As analytes with sufficient diversity in their physicochemical features, nicotine, N,N-Diethyl-meta-toluamide, and diclofenac were selected as test compounds for the study. The objective was to develop methodologies that would allow repeated non-depletive sampling from 96-well plates, using 100 µL of sample. Initially, thin film-SPME was investigated. Results revealed substantial depletion and consequent disruption in the system. Therefore, new ultra-thin coated fibers were developed. The applicability of this device to the described sampling scenario was tested by determining the protein binding of the analytes. Results showed good agreement with rapid equilibrium dialysis. The presented method allows high-throughput analysis using small volumes, enabling fast reliable free and total concentration determinations without disruption of system equilibrium.
Collapse
Affiliation(s)
- Ezel Boyacı
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.,Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | - Barbara Bojko
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.,Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067, Bydgoszcz, Poland
| | - Nathaly Reyes-Garcés
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Justen J Poole
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Germán Augusto Gómez-Ríos
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Alexandre Teixeira
- Unilever U.K., Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook Bedford, MK441LQ, United Kingdom
| | - Beate Nicol
- Unilever U.K., Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook Bedford, MK441LQ, United Kingdom
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
13
|
Reyes-Garcés N, Gionfriddo E, Gómez-Ríos GA, Alam MN, Boyacı E, Bojko B, Singh V, Grandy J, Pawliszyn J. Advances in Solid Phase Microextraction and Perspective on Future Directions. Anal Chem 2017; 90:302-360. [DOI: 10.1021/acs.analchem.7b04502] [Citation(s) in RCA: 402] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - Md. Nazmul Alam
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| | - Ezel Boyacı
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland
| | - Varoon Singh
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| | - Jonathan Grandy
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
14
|
Psillakis E. Vacuum-assisted headspace solid-phase microextraction: A tutorial review. Anal Chim Acta 2017; 986:12-24. [DOI: 10.1016/j.aca.2017.06.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/18/2017] [Accepted: 06/21/2017] [Indexed: 12/17/2022]
|
15
|
Zhang Q, Zhou L, Chen H, Wang CZ, Xia Z, Yuan CS. Solid-phase microextraction technology for in vitro and in vivo metabolite analysis. Trends Analyt Chem 2016; 80:57-65. [PMID: 27695152 DOI: 10.1016/j.trac.2016.02.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Analysis of endogenous metabolites in biological samples may lead to the identification of biomarkers in metabolomics studies. To achieve accurate sample analysis, a combined method of continuous quick sampling and extraction is required for online compound detection. Solid-phase microextraction (SPME) integrates sampling, extraction and concentration into a single solvent-free step for chemical analysis. SPME has a number of advantages, including simplicity, high sensitivity and a relatively non-invasive nature. In this article, we reviewed SPME technology in in vitro and in vivo analyses of metabolites after the ingestion of herbal medicines, foods and pharmaceutical agents. The metabolites of microorganisms in dietary supplements and in the gastrointestinal tract will also be examined. As a promising technology in biomedical and pharmaceutical research, SPME and its future applications will depend on advances in analytical technologies and material science.
Collapse
Affiliation(s)
- Qihui Zhang
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Liandi Zhou
- Department of Immunology, Basic Medical College, Chongqing Medical University, Chongqing 400016, China
| | - Hua Chen
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, U.S.A
| | - Zhining Xia
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, U.S.A
| |
Collapse
|
16
|
Boyacı E, Goryński K, Viteri CR, Pawliszyn J. A study of thin film solid phase microextraction methods for analysis of fluorinated benzoic acids in seawater. J Chromatogr A 2016; 1436:51-8. [DOI: 10.1016/j.chroma.2016.01.071] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/02/2016] [Accepted: 01/24/2016] [Indexed: 11/30/2022]
|
17
|
Ocaña-González JA, Fernández-Torres R, Bello-López MÁ, Ramos-Payán M. New developments in microextraction techniques in bioanalysis. A review. Anal Chim Acta 2016; 905:8-23. [DOI: 10.1016/j.aca.2015.10.041] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/08/2015] [Accepted: 10/28/2015] [Indexed: 12/21/2022]
|
18
|
Reyes-Garcés N, Bojko B, Hein D, Pawliszyn J. Solid phase microextraction devices prepared on plastic support as potential single-use samplers for bioanalytical applications. Anal Chem 2015; 87:9722-30. [PMID: 26340252 DOI: 10.1021/acs.analchem.5b01849] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study presents new thin-film solid phase microextraction (SPME) devices prepared on plastic as potential single-use samplers for bioanalysis. Polybutylene terephthalate (PBT) was selected as a support due to its well-known chemical resistance, low cost, and suitability as a material for different medical grade components. The herein proposed samplers were prepared by applying a hydrophilic-lipophilic balanced (HLB)-polyacrylonitrile (PAN) coating on rounded and flat PBT pieces previously sanded with regular sandpaper. SPME devices prepared on PBT were evaluated in terms of robustness, chemical stability, and possible interferences upon exposure to different solvents and matrixes. Rewarding results were found when these samplers were employed for the quantitative analysis of multiple doping substances in common biological matrixes such as urine, plasma, and whole blood. Finally, the proposed thin-film SPME devices made on a PBT were evaluated by conducting multiple extractions from whole blood and plasma using the Concept 96 system. Results showed that more than 20 extractions from plasma and whole blood can be performed without observed decreases in coating performance or peeling of the extraction phase from the plastic surface. These findings demonstrate the robustness of PAN-based coatings applied on such polymeric substrate and open up the possibility of introducing new alternatives and cost-effective materials as support to manufacture SPME biocompatible devices for a wide range of applications, particularly in the clinical field.
Collapse
Affiliation(s)
- Nathaly Reyes-Garcés
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Barbara Bojko
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Dietmar Hein
- Professional Analytical System (PAS) Technology , Richard-Wagner St. 10, 99441, Magdala, Germany
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|