1
|
Milić N, Milanović M, Drljača J, Sudji J, Milošević N. Challenges in the Analytical Preparation of a Biological Matrix in Analyses of Endocrine-Disrupting Bisphenols. SEPARATIONS 2023. [DOI: 10.3390/separations10040226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are xenobiotics presented in a variety of everyday products that may disrupt the normal activity of hormones. Exposure to bisphenol A as EDC at trace and ultra-trace levels is associated with adverse health effects, and children are recognized as the most vulnerable group to EDCs exposure. In this review, a summary is presented of up-to-date sample preparation methods and instrumental techniques applied for the detection and quantification of bisphenol A and its structural analogues in various biological matrices. Biological matrices such as blood, cell-free blood products, urine, saliva, breast milk, cordial blood, amniotic and semen fluids, as well as sweat and hair, are very complex; therefore, the detection and later quantification of bisphenols at low levels present a real analytical challenge. The most popular analytical approaches include gas and liquid chromatography coupled with mass spectrometry, and their enhanced reliability and sensitivity finally allow the separation and detection of bisphenols in biological samples, even as ultra-traces. Liquid/liquid extraction (LLE) and solid-phase extraction (SPE) are still the most common methods for their extraction from biological matrices. However, many modern and environmentally safe microextraction techniques are currently under development. The complexity of biological matrices and low concentrations of analytes are the main issues for the limited identification, as well as understanding the adverse health effects caused by chronical and ubiquitous exposure to bisphenols and its analogues.
Collapse
|
2
|
Hussain J, Cohen M, O'Malley CJ, Mantri N, Li Y, Mueller JF, Greaves R, Wang X. Detections of organophosphate and pyrethroid insecticide metabolites in urine and sweat obtained from women during infrared sauna and exercise: A pilot crossover study. Int J Hyg Environ Health 2023; 248:114091. [PMID: 36516689 DOI: 10.1016/j.ijheh.2022.114091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/16/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
Synthetic pesticides such as organophosphates and pyrethroids are commonly used worldwide yet the metabolic and long-term human health effects of these environmental exposures are unclear. Urinary detections of metabolites involving both classes of insecticides have been documented in various global populations. However, reports documenting similar detections in human sweat are sparse. In this study, the concentrations of four insecticide metabolites were measured using liquid chromatography coupled with tandem mass spectrometry in repeated sweat and urine collections (n = 85) from 10 women undergoing three interventions (control, infrared sauna and indoor bicycling) within a single-blinded randomised crossover trial. The Friedman test with post-hoc two-way analysis of variance, the related-samples Wilcoxon signed rank test and the Spearman's rank-order correlation test were used to analyse the results. Organophosphate metabolites were detected in 84.6% (22/26) and pyrethroids in 26.9% (7/26) of the collected sweat samples (pooled per individual, per intervention). Urinary concentrations of three of the four metabolites marginally increased after infrared sauna bathing: 3,5,6-trichloro-2-pyridinol (z = 2.395, p = 0.017); 3-phenoxybenzoic acid (z = 2.599, p = 0.009); and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (z = 2.090, p = 0.037). Urinary 3-phenoxybenzoic acid also increased after exercise (z = 2.073, p = 0.038) and demonstrated the most temporal variability (days to weeks) of any of the urinary metabolites. Definitive sweat/urine correlations were not demonstrated. These results indicate metabolites from organophosphate and pyrethroid pesticides can be detected in human sweat and this raises intriguing questions about perspiration and its role in the metabolism and excretion of synthetic pesticides.
Collapse
Affiliation(s)
- Joy Hussain
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia.
| | - Marc Cohen
- Extreme Wellness Institute, Melbourne, Victoria, Australia
| | - Cindy J O'Malley
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Nitin Mantri
- Pangenomics Group, School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Yan Li
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jochen F Mueller
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, Australia; Minderoo Centre - Plastics and Human Health, The University of Queensland, Queensland, Australia
| | - Ronda Greaves
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Xianyu Wang
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, Australia; Minderoo Centre - Plastics and Human Health, The University of Queensland, Queensland, Australia
| |
Collapse
|
3
|
Burat B, Reynaerts A, Baiwir D, Fléron M, Eppe G, Leal T, Mazzucchelli G. Characterization of the Human Eccrine Sweat Proteome-A Focus on the Biological Variability of Individual Sweat Protein Profiles. Int J Mol Sci 2021; 22:ijms221910871. [PMID: 34639210 PMCID: PMC8509809 DOI: 10.3390/ijms221910871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
The potential of eccrine sweat as a bio-fluid of interest for diagnosis and personalized therapy has not yet been fully evaluated, due to the lack of in-depth sweat characterization studies. Thanks to recent developments in omics, together with the availability of accredited sweat collection methods, the analysis of human sweat may now be envisioned as a standardized, non-invasive test for individualized monitoring and personalized medicine. Here, we characterized individual sweat samples, collected from 28 healthy adult volunteers under the most standardized sampling methodology, by applying optimized shotgun proteomics. The thorough characterization of the sweat proteome allowed the identification of 983 unique proteins from which 344 were identified across all samples. Annotation-wise, the study of the sweat proteome unveiled the over-representation of newly addressed actin dynamics, oxidative stress and proteasome-related functions, in addition to well-described proteolysis and anti-microbial immunity. The sweat proteome composition correlated with the inter-individual variability of sweat secretion parameters. In addition, both gender-exclusive proteins and gender-specific protein abundances were highlighted, despite the high similarity between human female and male sweat proteomes. In conclusion, standardized sample collection coupled with optimized shotgun proteomics significantly improved the depth of sweat proteome coverage, far beyond previous similar studies. The identified proteins were involved in many diverse biological processes and molecular functions, indicating the potential of this bio-fluid as a valuable biological matrix for further studies. Addressing sweat variability, our results prove the proteomic profiling of sweat to be a promising bio-fluid analysis for individualized, non-invasive monitoring and personalized medicine.
Collapse
Affiliation(s)
- Bastien Burat
- Mass Spectrometry Laboratory, MolSys Research Unit, Liège Université, B-4000 Liège, Belgium;
- Correspondence: (B.B.); (G.M.); Tel.: +32-(0)-4-366-34-11; Fax: +32-(0)-4-366-43-8 (G.M.)
| | - Audrey Reynaerts
- Louvain Center for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, B-1200 Brussels, Belgium; (A.R.); (T.L.)
| | - Dominique Baiwir
- GIGA Proteomics Facility, Liège Université, B-4000 Liège, Belgium; (D.B.); (M.F.)
| | - Maximilien Fléron
- GIGA Proteomics Facility, Liège Université, B-4000 Liège, Belgium; (D.B.); (M.F.)
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, Liège Université, B-4000 Liège, Belgium;
| | - Teresinha Leal
- Louvain Center for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, B-1200 Brussels, Belgium; (A.R.); (T.L.)
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, MolSys Research Unit, Liège Université, B-4000 Liège, Belgium;
- Correspondence: (B.B.); (G.M.); Tel.: +32-(0)-4-366-34-11; Fax: +32-(0)-4-366-43-8 (G.M.)
| |
Collapse
|
4
|
Alternative matrices in forensic toxicology: a critical review. Forensic Toxicol 2021; 40:1-18. [DOI: 10.1007/s11419-021-00596-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022]
Abstract
Abstract
Purpose
The use of alternative matrices in toxicological analyses has been on the rise in clinical and forensic settings. Specimens alternative to blood and urine are useful in providing additional information regarding drug exposure and analytical benefits. The goal of this paper is to present a critical review on the most recent literature regarding the application of six common alternative matrices, i.e., oral fluid, hair, sweat, meconium, breast milk and vitreous humor in forensic toxicology.
Methods
The recent literature have been searched and reviewed for the characteristics, advantages and limitations of oral fluid, hair, sweat, meconium, breast milk and vitreous humor and its applications in the analysis of traditional drugs of abuse and novel psychoactive substances (NPS).
Results
This paper outlines the properties of six biological matrices that have been used in forensic analyses, as alternatives to whole blood and urine specimens. Each of this matrix has benefits in regards to sampling, extraction, detection window, typical drug levels and other aspects. However, theses matrices have also limitations such as limited incorporation of drugs (according to physical–chemical properties), impossibility to correlate the concentrations for effects, low levels of xenobiotics and ultimately the need for more sensitive analysis. For more traditional drugs of abuse (e.g., cocaine and amphetamines), there are already data available on the detection in alternative matrices. However, data on the determination of emerging drugs such as the NPS in alternative biological matrices are more limited.
Conclusions
Alternative biological fluids are important specimens in forensic toxicology. These matrices have been increasingly reported over the years, and this dynamic will probably continue in the future, especially considering their inherent advantages and the possibility to be used when blood or urine are unavailable. However, one should be aware that these matrices have limitations and particular properties, and the findings obtained from the analysis of these specimens may vary according to the type of matrix. As a potential perspective in forensic toxicology, the topic of alternative matrices will be continuously explored, especially emphasizing NPS.
Collapse
|
5
|
Nunes MJ, Cordas CM, Moura JJG, Noronha JP, Branco LC. Screening of Potential Stress Biomarkers in Sweat Associated with Sports Training. SPORTS MEDICINE - OPEN 2021; 7:8. [PMID: 33481103 PMCID: PMC7822976 DOI: 10.1186/s40798-020-00294-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Intense and continuous physical training in sports is related with psychological and physiological stress, affecting the health and well-being of athletes. The development of non-invasive sampling methodologies is essential to consider sweat as a potential biological fluid for stress biomarker assessment. In the current work, the identification in sweat samples of potential molecules that may be used as stress biomarkers was pursued. METHODS A sweat pool sample from football players after a 90-min intense training game was studied. RESULTS An analysis method using liquid chromatography with detection by tandem mass spectrometry (LC-MSMS) to attain a screening profile of sweat composition is presented. The major focus was on neurotransmitters (e.g. monoamines and metabolites) and other biological molecules related with physical training, such as precursors of biogenic amines (phenylaniline, tyrosine, etc.). CONCLUSIONS This study allowed the identification of small biomolecules, neurotransmitters and other related molecules in sweat that are potentially associated with stress conditions. The developed methodology intends to contribute to the assessment and study of physical and psychological stress biomarkers related with intense sports using non-invasive methods.
Collapse
Affiliation(s)
- Maria João Nunes
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal.
| | - Cristina M Cordas
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal.
| | - José J G Moura
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
| | - João Paulo Noronha
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Luís Cobra Branco
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
| |
Collapse
|
6
|
Stoffers KM, Cronkright AA, Huggins GS, Baleja JD. Noninvasive Epidermal Metabolite Profiling. Anal Chem 2020; 92:12467-12472. [PMID: 32830947 DOI: 10.1021/acs.analchem.0c02274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A buffer placed in brief contact in the skin was assayed by 1H NMR spectroscopy. We found that this passive extraction of the skin surface yields abundant metabolites. Metabolites of the skin surface originate from a variety of sources, including the sweat gland, which produces lactate from the glucose received from its capillary bed. Little is known about how metabolites resident on and within the skin surface respond to a metabolic or hemodynamic perturbation. As a possible application of epidermal metabolite profiling, we asked whether metabolites extracted from the skin surface are indicative of heart failure. The levels of lactate and other molecules were significantly lower in patients in heart failure than in individuals who reported healthy heart function, possibly due to reduced blood flow to the sweat gland resulting in a lack of tissue perfusion. Most amino acids were unchanged in levels, except for glycine and serine that increased as a percentage of all amino acids. These results have the potential in the long term to help decide the extent to which a patient has heart failure for which objective measures are lacking. Moreover, the results suggest that epidermal metabolite profiling may be useful for other assessments of human health.
Collapse
Affiliation(s)
- Katarina M Stoffers
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - Ashley A Cronkright
- Molecular Cardiology Research Institute Center for Translational Genomics, Tufts Medical Center, 800 Washington Street, Boston, Massachusetts 02111, United States
| | - Gordon S Huggins
- Molecular Cardiology Research Institute Center for Translational Genomics, Tufts Medical Center, 800 Washington Street, Boston, Massachusetts 02111, United States
| | - James D Baleja
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| |
Collapse
|
7
|
Ravara B, Zampieri S, Kern H, Carraro U. Blood contamination, a problem or a lucky chance to analyze non-invasively Myokines in mouth fluids? Eur J Transl Myol 2019; 29:8713. [PMID: 31908751 PMCID: PMC6926435 DOI: 10.4081/ejtm.2019.8713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 12/06/2019] [Indexed: 01/15/2023] Open
Abstract
Use of saliva in clinical studies are increasing to identify methods less invasive than blood sampling in search for systemic changes of biomarkers related to physical activity, aging, late aging and rehabilitation. The consensus is that the diagnostic value of whole saliva is compromised by the presence of blood, but we are looking at the contamination as a major opportunity for non-invasive analyses of serological biomarkers. The aim of this preliminary study was to evaluate the presence of serum in mouth fluids of healthy seniors and the eventual changes after a modest trauma, i.e., tooth brushing. Seven heathy persons, aged more than 65 years, drooling saliva in a test tube provided the fluids for the analyses. After low speed centrifugation, small aliquots of supernatants were frozen in liquid nitrogen and stored at -80° until use. Aliquots were thawed and used for quantification by the Lowry method of total proteins and by colorimetric ELISA of serum albumin, fibrinogen and lysozyme. Hemoglobin content was quantified by Spectrophotometry. Adjustment of saliva dilution, after a preliminary test, increased the homogeneity of the analytes’ content determined by colorimetric ELISA. The control reference to judge the quantity of serum in saliva was a pool of sera from age-matched healthy persons. Saliva collected from the seven healthy elderly person before and after tooth-and-gum, brushing presented measurable amount of the analytes, including fibrinogen, a minor component of the pooled sera. Tooth brushing did not induced statistically significant difference in analytes’ contents, suggesting that a measurable blood contamination is a frequent event in elderly persons. In conclusion, fibrinogen analysis in saliva is a promising approach to quantify serological biomarkers by a non-invasive procedure that will increase acceptability and frequency of analyses during follow-up in aging and rehabilitation.
Collapse
Affiliation(s)
- Barbara Ravara
- CIR-Myo, Interdepartmental Research Center of Myology, University of Padova, Italy.,Department of Biomedical Sciences (DSB), University of Padova, Italy.,A&C M-C Foundation for Translational Myology, Padova, Italy
| | - Sandra Zampieri
- CIR-Myo, Interdepartmental Research Center of Myology, University of Padova, Italy.,Ludwig Boltzmann Institute of Rehabilitation Research, St Pölten, Austria.,Institute of Physical Medicine and Rehabilitation, Prim. Dr. H Kern GmbH, Amstetten, Austria.,Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, Italy
| | - Helmut Kern
- Ludwig Boltzmann Institute of Rehabilitation Research, St Pölten, Austria.,Institute of Physical Medicine and Rehabilitation, Prim. Dr. H Kern GmbH, Amstetten, Austria
| | - Ugo Carraro
- CIR-Myo, Interdepartmental Research Center of Myology, University of Padova, Italy.,Department of Biomedical Sciences (DSB), University of Padova, Italy.,A&C M-C Foundation for Translational Myology, Padova, Italy
| |
Collapse
|
8
|
Carraro U. Collection of the Abstracts of the 2019Sp PMD: Translational Myology and Mobility Medicine. Eur J Transl Myol 2019; 29:8155. [PMID: 31019666 PMCID: PMC6460219 DOI: 10.4081/ejtm.2019.8155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Interdepartmental Research Centre of Myology (CIR-Myo), Department of Biomedical Sciences, University of Padova, Italy and the A&C M-C Foundation for Translational Myology, Padova, Italy organized with the scientific support of Helmut Kern, Jonathan C. Jarvis, Viviana Moresi, Marco Narici, Feliciano Protasi, Marco Sandri and Ugo Carraro, the 2019SpringPaduaMuscleDays: Translational Myology and Mobility Medicine, an International Conference held March 28-30, 2019 in Euganei Hills and Padova (Italy). Presentations and discussions of the Three Physiology Lectures and of the seven Sessions (I: Spinal Cord Neuromodulation and h-bFES in SC; II: Muscle epigenetics in aging and myopathies; III: Experimental approaches in animal models; IV: Face and Voice Rejuvenation; V: Muscle Imaging; VI: Official Meeting of the EU Center of Active Aging; VII: Early Rehabilitation after knee and hip replacement) were at very high levels. This was true in the past and will be true in future events thanks to researchers and clinicians who were and are eager to attend the PaduaMuscleDays.
Collapse
Affiliation(s)
- Ugo Carraro
- Interdepartmental Research Centre of Myology (CIR-Myo), Department of Biomedical Sciences, University of Padova, Italy
- A&C M-C Foundation for Translational Myology, Padova, Italy
| |
Collapse
|
9
|
Harshman SW, Pitsch RL, Smith ZK, O’Connor ML, Geier BA, Qualley AV, Schaeublin NM, Fischer MV, Eckerle JJ, Strang AJ, Martin JA. The proteomic and metabolomic characterization of exercise-induced sweat for human performance monitoring: A pilot investigation. PLoS One 2018; 13:e0203133. [PMID: 30383773 PMCID: PMC6211630 DOI: 10.1371/journal.pone.0203133] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/15/2018] [Indexed: 12/01/2022] Open
Abstract
Sweat is a biofluid with several attractive attributes. However, investigation into sweat for biomarker discovery applications is still in its infancy. To add support for the use of sweat as a non-invasive media for human performance monitoring, volunteer participants were subjected to a physical exertion model using a treadmill. Following exercise, sweat was collected, aliquotted, and analyzed for metabolite and protein content via high-resolution mass spectrometry. Overall, the proteomic analysis illustrates significant enrichment steps will be required for proteomic biomarker discovery from single sweat samples as protein abundance is low in this medium. Furthermore, the results indicate a potential for protein degradation, or a large number of low molecular weight protein/peptides, in these samples. Metabolomic analysis shows a strong correlation in the overall abundance among sweat metabolites. Finally, hierarchical clustering of participant metabolite abundances show trends emerging, although no significant trends were observed (alpha = 0.8, lambda = 1 standard error via cross validation). However, these data suggest with a greater number of biological replicates, stronger, statistically significant results, can be obtained. Collectively, this study represents the first to simultaneously use both proteomic and metabolomic analysis to investigate sweat. These data highlight several pitfalls of sweat analysis for biomarker discovery applications.
Collapse
Affiliation(s)
- Sean W. Harshman
- UES Inc., Air Force Research Laboratory, Wright- Patterson Air Force Base, Ohio, United States of America
- * E-mail:
| | - Rhonda L. Pitsch
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, United States of America
| | - Zachary K. Smith
- UES Inc., Air Force Research Laboratory, Wright- Patterson Air Force Base, Ohio, United States of America
| | - Maegan L. O’Connor
- Oak Ridge Institute of Science & Education, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, United States of America
| | - Brian A. Geier
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, United States of America
| | - Anthony V. Qualley
- UES Inc., Air Force Research Laboratory, Wright- Patterson Air Force Base, Ohio, United States of America
| | - Nicole M. Schaeublin
- UES Inc., Air Force Research Laboratory, Wright- Patterson Air Force Base, Ohio, United States of America
| | - Molly V. Fischer
- Oak Ridge Institute of Science & Education, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, United States of America
| | - Jason J. Eckerle
- InfoSciTex Corp., Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, United States of America
| | - Adam J. Strang
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, United States of America
| | - Jennifer A. Martin
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, United States of America
| |
Collapse
|
10
|
Cho E, Mohammadifar M, Choi S. A Single-Use, Self-Powered, Paper-Based Sensor Patch for Detection of Exercise-Induced Hypoglycemia. MICROMACHINES 2017; 8:mi8090265. [PMID: 30400457 PMCID: PMC6189796 DOI: 10.3390/mi8090265] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/23/2017] [Accepted: 08/27/2017] [Indexed: 11/21/2022]
Abstract
We report a paper-based self-powered sensor patch for prevention and management of exercise-induced hypoglycemia. The article describes the fabrication, in vitro, and in vivo characterization of the sensor for glucose monitoring in human sweat. This wearable, non-invasive, single-use biosensor integrates a vertically stacked, paper-based glucose/oxygen enzymatic fuel cell into a standard Band-Aid adhesive patch. The paper-based device attaches directly to skin, wicks sweat by using capillary forces to a reservoir where chemical energy is converted to electrical energy, and monitors glucose without external power and sophisticated readout instruments. The device utilizes (1) a 3-D paper-based fuel cell configuration, (2) an electrically conducting microfluidic reservoir for a high anode surface area and efficient mass transfer, and (3) a direct electron transfer between glucose oxidase and anodes for enhanced electron discharge properties. The developed sensor shows a high linearity of current at 0.02–1.0 mg/mL glucose centration (R2 = 0.989) with a high sensitivity of 1.35 µA/mM.
Collapse
Affiliation(s)
- Eunyoung Cho
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York-Binghamton, Binghamton, NY 13902, USA.
| | - Maedeh Mohammadifar
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York-Binghamton, Binghamton, NY 13902, USA.
| | - Seokheun Choi
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York-Binghamton, Binghamton, NY 13902, USA.
| |
Collapse
|
11
|
Castillo-Peinado LS, Luque de Castro MD. Present and foreseeable future of metabolomics in forensic analysis. Anal Chim Acta 2016; 925:1-15. [PMID: 27188312 DOI: 10.1016/j.aca.2016.04.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/12/2016] [Accepted: 04/17/2016] [Indexed: 01/24/2023]
Abstract
The revulsive publications during the last years on the precariousness of forensic sciences worldwide have promoted the move of major steps towards improvement of this science. One of the steps (viz. a higher involvement of metabolomics in the new era of forensic analysis) deserves to be discussed under different angles. Thus, the characteristics of metabolomics that make it a useful tool in forensic analysis, the aspects in which this omics is so far implicit, but not mentioned in forensic analyses, and how typical forensic parameters such as the post-mortem interval or fingerprints take benefits from metabolomics are critically discussed in this review. The way in which the metabolomics-forensic binomial succeeds when either conventional or less frequent samples are used is highlighted here. Finally, the pillars that should support future developments involving metabolomics and forensic analysis, and the research required for a fruitful in-depth involvement of metabolomics in forensic analysis are critically discussed.
Collapse
Affiliation(s)
- L S Castillo-Peinado
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain; University of Córdoba, Agrifood Excellence Campus, ceiA3, Spain; Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, E-14071, Córdoba, Spain
| | - M D Luque de Castro
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain; University of Córdoba, Agrifood Excellence Campus, ceiA3, Spain; Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, E-14071, Córdoba, Spain.
| |
Collapse
|