1
|
Bocci M, Zana A, Principi L, Lucaroni L, Prati L, Gilardoni E, Neri D, Cazzamalli S, Galbiati A. In vivo activation of FAP-cleavable small molecule-drug conjugates for the targeted delivery of camptothecins and tubulin poisons to the tumor microenvironment. J Control Release 2024; 367:779-790. [PMID: 38346501 DOI: 10.1016/j.jconrel.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/25/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Small molecule-drug conjugates (SMDCs) are increasingly considered as a therapeutic alternative to antibody-drug conjugates (ADCs) for cancer therapy. OncoFAP is an ultra-high affinity ligand of Fibroblast Activation Protein (FAP), a stromal tumor-associated antigen overexpressed in a wide variety of solid human malignancies. We have recently reported the development of non-internalizing OncoFAP-based SMDCs, which are activated by FAP thanks to selective proteolytic cleavage of the -GlyPro- linker with consequent release of monomethyl auristatin E (MMAE) in the tumor microenvironment. In this article, we describe the generation and the in vivo characterization of FAP-cleavable OncoFAP-drug conjugates based on potent topoisomerase I inhibitors (DXd, SN-38, and exatecan) and an anti-tubulin payload (MMAE), which are already exploited in clinical-stage and approved ADCs. The Glycine-Proline FAP-cleavable technology was directly benchmarked against linkers found in Adcetris™, Enhertu™, and Trodelvy™ structures by means of in vivo therapeutic experiments in mice bearing tumors with cellular or stromal FAP expression. OncoFAP-GlyPro-Exatecan and OncoFAP-GlyPro-MMAE emerged as the most efficacious anti-cancer therapeutics against FAP-positive cellular models. OncoFAP-GlyPro-MMAE exhibited a potent antitumor activity also against stromal models, and was therefore selected for clinical development.
Collapse
Affiliation(s)
- Matilde Bocci
- Philochem AG, R&D Department, CH-8112 Otelfingen, Switzerland.
| | - Aureliano Zana
- Philochem AG, R&D Department, CH-8112 Otelfingen, Switzerland
| | | | - Laura Lucaroni
- Philochem AG, R&D Department, CH-8112 Otelfingen, Switzerland
| | - Luca Prati
- Philochem AG, R&D Department, CH-8112 Otelfingen, Switzerland
| | | | - Dario Neri
- Swiss Federal Institute of Technology, Department of Chemistry and Applied Biosciences, Zurich CH-8093, Switzerland; Philogen S.p.A., Siena 53100, Italy
| | | | - Andrea Galbiati
- Philochem AG, R&D Department, CH-8112 Otelfingen, Switzerland.
| |
Collapse
|
2
|
Machulkin AE, Uspenskaya AA, Zyk NY, Nimenko EA, Ber AP, Petrov SA, Shafikov RR, Skvortsov DA, Smirnova GB, Borisova YA, Pokrovsky VS, Kolmogorov VS, Vaneev AN, Ivanenkov YA, Khudyakov AD, Kovalev SV, Erofeev AS, Gorelkin PV, Beloglazkina EK, Zyk NV, Khazanova ES, Majouga AG. PSMA-targeted small-molecule docetaxel conjugate: Synthesis and preclinical evaluation. Eur J Med Chem 2021; 227:113936. [PMID: 34717125 DOI: 10.1016/j.ejmech.2021.113936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022]
Abstract
Prostate cancer is one of the most commonly diagnosed men's cancers and remains one of the leading causes of cancer death. The development of approaches to the treatment of this oncological disease is an ongoing process. In this work, we have carried out the selection of ligands for the creation of conjugates based on the drug docetaxel and synthesized a series of three docetaxel conjugates. In vitro cytotoxicity of these molecules was evaluated using the MTT assay. Based on the assay results, we selected the conjugate which showed cytotoxic potential close to unmodified docetaxel. At the same time, the molar solubility of the resulting compound increased up to 20 times in comparison with the drug itself. In vivo evaluation on 22Rv1 (PSMA+) xenograft model demonstrated a good potency of the synthesized conjugate to inhibit tumor growth: the inhibition turned out to be more than 80% at a dose of 30 mg/kg. Pharmacokinetic parameters of conjugate distribution were analyzed. Also, it was found that PSMA-targeted docetaxel conjugate is less toxic than docetaxel itself, the decrease of molar acute toxicity in comparison with free docetaxel was up to 20%. Obtained conjugate PSMA-DOC is a good candidate for further expanded preclinical trials because of high antitumor activity, fewer side toxic effects and better solubility.
Collapse
Affiliation(s)
- Aleksei E Machulkin
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation.
| | - Anastasia A Uspenskaya
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Nikolay Y Zyk
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Ekaterina A Nimenko
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Anton P Ber
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Stanislav A Petrov
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Radik R Shafikov
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation; Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, GSP-7, Ulitsa Miklukho-Maklaya, 16/10, Moscow, 117997, Russian Federation
| | - Dmitry A Skvortsov
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation; Faculty of Biology and Biotechnologies, Higher School of Economics, Myasnitskaya 13, Moscow, 101000, Russia
| | - Galina B Smirnova
- N.N. Blokhin Cancer Research Center, 24 Kashirskoye Sh., Moscow, 115478, Russia
| | - Yulia A Borisova
- N.N. Blokhin Cancer Research Center, 24 Kashirskoye Sh., Moscow, 115478, Russia
| | - Vadim S Pokrovsky
- N.N. Blokhin Cancer Research Center, 24 Kashirskoye Sh., Moscow, 115478, Russia; RUDN University, Miklukho-Maklaya Str.6, Moscow, 117198, Russian Federation
| | - Vasilii S Kolmogorov
- National University of Science and Technology MISiS, 9 Leninskiy Pr, Moscow, 119049, Russian Federation
| | - Alexander N Vaneev
- National University of Science and Technology MISiS, 9 Leninskiy Pr, Moscow, 119049, Russian Federation
| | - Yan A Ivanenkov
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation; Moscow Institute of Physics and Technology (State University), 9 Institutskiy Lane, Dolgoprudny City, Moscow Region, 141700, Russian Federation; National University of Science and Technology MISiS, 9 Leninskiy Pr, Moscow, 119049, Russian Federation; The Federal State Unitary Enterprise Dukhov Automatics Research Institute, Moscow, 127055, Russia; Institute of Biochemistry and Genetics Ufa Science Centre Russian Academy of Sciences (IBG RAS), Oktyabrya Prospekt 71, Ufa, 450054, Russian Federation
| | - Alexander D Khudyakov
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Sergei V Kovalev
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Alexander S Erofeev
- National University of Science and Technology MISiS, 9 Leninskiy Pr, Moscow, 119049, Russian Federation
| | - Petr V Gorelkin
- National University of Science and Technology MISiS, 9 Leninskiy Pr, Moscow, 119049, Russian Federation
| | - Elena K Beloglazkina
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Nikolay V Zyk
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation
| | - Elena S Khazanova
- LLC Izvarino-Pharma, V. Vnukovskoe, Vnukovskoe Sh., 5th Km., Building 1, Moscow, 108817, Russian Federation
| | - Alexander G Majouga
- Lomonosov Moscow State University, Chemistry Dept., Leninskie Gory, Building 1/3, GSP-1, Moscow, 119991, Russian Federation; National University of Science and Technology MISiS, 9 Leninskiy Pr, Moscow, 119049, Russian Federation; Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, Moscow, 125047, Russian Federation
| |
Collapse
|
3
|
Abstract
Introduction: Antibody-Drug Conjugates (ADCs) are becoming increasingly important weapons in the fight against cancer, as evidenced by the growing number of approved products. The complex nature of an ADC means that there is a vast array of choices to consider in the design of such drugs.Areas covered: We provide an overview of developments in each facet of ADC structure: the antibody, linker, and payload. Looking at the current clinical landscape, we discuss trends that have led to the evolution of ADC design.Expert opinion:Following a history of setbacks and high discontinuation rates, the understanding of the ADC field has grown. If developers can obtain a firm grasp of the structure-function relationship of their molecule, we expect the advances in ADC design to translate to improved clinical success. Moreover, the breadth of ADC applications will continue to expand to target new indications with novel targets and payloads.
Collapse
Affiliation(s)
| | | | - Lisa L McDermott
- Process and Analytical Development, MilliporeSigma, St. Louis, MO, USA
| |
Collapse
|
4
|
Varun BV, Vaithegi K, Yi S, Park SB. Nature-inspired remodeling of (aza)indoles to meta-aminoaryl nicotinates for late-stage conjugation of vitamin B 3 to (hetero)arylamines. Nat Commun 2020; 11:6308. [PMID: 33298909 PMCID: PMC7726565 DOI: 10.1038/s41467-020-19610-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022] Open
Abstract
Despite the availability of numerous routes to substituted nicotinates based on the Bohlmann–Rahtz pyridine synthesis, the existing methods have several limitations, such as the inevitable ortho-substitutions and the inability to conjugate vitamin B3 to other pharmaceutical agents. Inspired by the biosynthesis of nicotinic acid (a form of vitamin B3) from tryptophan, we herein report the development of a strategy for the synthesis of meta-aminoaryl nicotinates from 3-formyl(aza)indoles. Our strategy is mechanistically different from the reported routes and involves the transformation of (aza)indole scaffolds into substituted meta-aminobiaryl scaffolds via Aldol-type addition and intramolecular cyclization followed by C–N bond cleavage and re-aromatization. Unlike previous synthetic routes, this biomimetic method utilizes propiolates as enamine precursors and thus allows access to ortho-unsubstituted nicotinates. In addition, the synthetic feasibility toward the halo-/boronic ester-substituted aminobiaryls clearly differentiates the present strategy from other cross-coupling strategies. Most importantly, our method enables the late-stage conjugation of bioactive (hetero)arylamines with nicotinates and nicotinamides and allows access to the previously unexplored chemical space for biomedical research. Vitamin B3 derivatives display a range of biological activities. Here, the authors report the synthesis of meta-aminoaryl nicotinates, derivatives of vitamin B3, and their late-stage conjugation with (hetero)arylamines, ultimately expanding the chemical space for biomedical research.
Collapse
Affiliation(s)
- Begur Vasanthkumar Varun
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kannan Vaithegi
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sihyeong Yi
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Bum Park
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
5
|
Zuo P. Capturing the Magic Bullet: Pharmacokinetic Principles and Modeling of Antibody-Drug Conjugates. AAPS JOURNAL 2020; 22:105. [PMID: 32767003 DOI: 10.1208/s12248-020-00475-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022]
Abstract
Over the past two decades, antibody-drug conjugates (ADCs) have emerged as a promising class of drugs for cancer therapy and have expanded to nononcology fields such as inflammatory diseases, atherosclerosis, and bacteremia. Eight ADCs are currently approved by FDA for clinical applications, with more novel ADCs under clinical development. Compared with traditional chemotherapy, ADCs combine the target specificity of antibodies with chemotherapeutic capabilities of cytotoxic drugs. The benefits include reduced systemic toxicity and enhanced therapeutic index for patients. However, the heterogeneous structures of ADCs and their dynamic changes following administration create challenges in their development. The understanding of ADC pharmacokinetics (PK) is crucial for the optimization of clinical dosing regimens when translating from animal to human. In addition, it contributes to the optimization of dose selection and clinical monitoring with regard to safety and efficacy. This manuscript reviews the PK characteristics of ADCs and summarizes the diverse approaches for PK modeling that can be used to evaluate an ADC at the preclinical and clinical stages to support their successful development. Despite the numerous available options, fit-for-purpose modeling approaches for the PK and PD of ADCs should be critically planned and well-thought-out to adequately support the development of an ADC.
Collapse
Affiliation(s)
- Peiying Zuo
- Pharmacometrics US, Clinical Pharmacology & Exploratory Development, Astellas Pharma, Inc., USA, 1 Astellas Way, Northbrook, Illinois, 60062, USA.
| |
Collapse
|
6
|
Krzyscik MA, Zakrzewska M, Otlewski J. Site-Specific, Stoichiometric-Controlled, PEGylated Conjugates of Fibroblast Growth Factor 2 (FGF2) with Hydrophilic Auristatin Y for Highly Selective Killing of Cancer Cells Overproducing Fibroblast Growth Factor Receptor 1 (FGFR1). Mol Pharm 2020; 17:2734-2748. [PMID: 32501706 PMCID: PMC7588128 DOI: 10.1021/acs.molpharmaceut.0c00419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
In
spite of significant progress in the field of targeted anticancer
therapy, the FDA has approved only five ADC-based drugs. Hence the
search for new targeted anticancer agents is an unfulfilled necessity.
Here, we present novel types of protein–drug conjugates (PDCs)
that exhibit superior anticancer activities. Instead of a monoclonal
antibody, we used fibroblast growth factor 2 (FGF2) as a targeting
molecule. FGF2 is a natural ligand of fibroblast growth factor receptor
1 (FGFR1), a transmembrane receptor overproduced in various types
of cancers. We synthesized site-specific and stoichiometric-controlled
conjugates of FGF2 with a highly potent, hydrophilic derivative of
auristatin called auristatin Y. To increase the hydrophilicity and
hydrodynamic radius of conjugates, we employed PEG4 and PEG27 molecules
as a spacer between the targeting molecule and the cytotoxic payload.
All conjugates were selective to FGFR1-positive cell lines, effectively
internalized via the FGFR1-dependent pathway, and exhibited a highly
cytotoxic effect only on FGFR1-positive cancer cell lines.
Collapse
|
7
|
Krzyscik MA, Opaliński Ł, Otlewski J. Novel Method for Preparation of Site-Specific, Stoichiometric-Controlled Dual Warhead Conjugate of FGF2 via Dimerization Employing Sortase A-Mediated Ligation. Mol Pharm 2019; 16:3588-3599. [PMID: 31244217 DOI: 10.1021/acs.molpharmaceut.9b00434] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Targeted therapies are rapidly evolving modalities of cancer treatment. The largest group of currently developed biopharmaceuticals is antibody-drug conjugates (ADCs). Here, we developed a new modular strategy for the generation of cytotoxic bioconjugates, containing a homodimer of targeting protein and two highly potent anticancer drugs with distinct mechanisms of action. Instead of antibody, we applied human fibroblast growth factor 2 (FGF2) as a targeting protein. We produced a conjugate of FGF2 with either monomethyl auristatin E (MMAE) or α-amanitin (αAMTN) as a cytotoxic agent and subsequently applied a sortase A-mediated ligation to obtain a dimeric conjugate containing both MMAE and αAMTN. The developed method ensures site-specific conjugation and a controlled drug-to-protein ratio. We validated our approach by demonstrating that dimeric dual warhead conjugate exhibits higher cytotoxic potency against fibroblast growth factor receptor-positive cell lines than single-warhead conjugates. Our modular technology can be applied to other targeting proteins or drugs and thus can be used for preparation of different bioconjugates.
Collapse
|
8
|
Immunogenicity of antibody-drug conjugates: observations across 8 molecules in 11 clinical trials. Bioanalysis 2019; 11:1555-1568. [PMID: 31208199 DOI: 10.4155/bio-2018-0259] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: To evaluate the clinical immunogenicity of eight antibody-drug conjugates (ADCs), multi-domain biotherapeutics that could theoretically pose a greater immunogenicity risk than monoclonal antibodies (mAbs) because they contain non-natural structural motifs. Methodology & results: Immunogenicity strategies and assays for these ADCs included those commonly used for conventional biotherapeutics with additional characterization. A tiered approach was adopted for testing Phase I and II clinical study samples with screening, confirmatory assays and additional domain characterization. Antidrug antibody incidences with these ADCs were within those reported for mAb biotherapeutics with no apparent impact on clinical outcomes. Conclusion: These data suggest that the ADC hapten-like structure across these eight ADCs does not appear to increase patient immune responses beyond those generally observed for mAb biotherapeutics.
Collapse
|
9
|
Immunogenicity considerations for antibody–drug conjugates: a focus on neutralizing antibody assays. Bioanalysis 2018; 10:65-70. [DOI: 10.4155/bio-2017-0229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
10
|
Harnessing a catalytic lysine residue for the one-step preparation of homogeneous antibody-drug conjugates. Nat Commun 2017; 8:1112. [PMID: 29062027 PMCID: PMC5653646 DOI: 10.1038/s41467-017-01257-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 09/01/2017] [Indexed: 01/09/2023] Open
Abstract
Current strategies to produce homogeneous antibody-drug conjugates (ADCs) rely on mutations or inefficient conjugation chemistries. Here we present a strategy to produce site-specific ADCs using a highly reactive natural buried lysine embedded in a dual variable domain (DVD) format. This approach is mutation free and drug conjugation proceeds rapidly at neutral pH in a single step without removing any charges. The conjugation chemistry is highly robust, enabling the use of crude DVD for ADC preparation. In addition, this strategy affords the ability to precisely monitor the efficiency of drug conjugation with a catalytic assay. ADCs targeting HER2 were prepared and demonstrated to be highly potent and specific in vitro and in vivo. Furthermore, the modular DVD platform was used to prepare potent and specific ADCs targeting CD138 and CD79B, two clinically established targets overexpressed in multiple myeloma and non-Hodgkin lymphoma, respectively. Current strategies for producing antibody-drug conjugates often rely on inefficient conjugation chemistry or on generating mutations in the antibody sequence. Here the authors demonstrate a mutation-free, single-step conjugation platform utilizing a buried lysine residue.
Collapse
|
11
|
Affiliation(s)
- Madduri Srinivasarao
- Purdue Institute for Drug
Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Philip S. Low
- Purdue Institute for Drug
Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
12
|
Sousa F, Castro P, Fonte P, Kennedy PJ, Neves-Petersen MT, Sarmento B. Nanoparticles for the delivery of therapeutic antibodies: Dogma or promising strategy? Expert Opin Drug Deliv 2016; 14:1163-1176. [PMID: 28005451 DOI: 10.1080/17425247.2017.1273345] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Over the past two decades, therapeutic antibodies have demonstrated promising results in the treatment of a wide array of diseases. However, the application of antibody-based therapy implies multiple administrations and a high cost of antibody production, resulting in costly therapy. Another disadvantage inherent to antibody-based therapy is the limited stability of antibodies and the low level of tissue penetration. The use of nanoparticles as delivery systems for antibodies allows for a reduction in antibody dosing and may represent a suitable alternative to increase antibody stability Areas covered: We discuss different nanocarriers intended for the delivery of antibodies as well as the corresponding encapsulation methods. Recent developments in antibody nanoencapsulation, particularly the possible toxicity issues that may arise from entrapment of antibodies into nanocarriers, are also assessed. In addition, this review will discuss the alterations in antibody structure and bioactivity that occur with nanoencapsulation. Expert opinion: Nanocarriers can protect antibodies from degradation, ensuring superior bioavailability. Encapsulation of therapeutic antibodies may offer some advantages, including potential targeting, reduced immunogenicity and controlled release. Furthermore, antibody nanoencapsulation may aid in the incorporation of the antibodies into the cells, if intracellular components (e.g. intracellular enzymes, oncogenic proteins, transcription factors) are to be targeted.
Collapse
Affiliation(s)
- Flávia Sousa
- a i3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto , Porto , Portugal.,b INEB - Instituto de Engenharia Biomédica , Universidade do Porto , Porto , Portugal.,c ICBAS - Instituto Ciências Biomédicas Abel Salazar , Universidade do Porto , Porto , Portugal.,d CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde , Gandra-PRD , Portugal
| | - Pedro Castro
- e CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia , Universidade Católica Portuguesa/Porto , Porto , Portugal
| | - Pedro Fonte
- f UCIBIO, REQUIMTE, Department of Chemical Sciences - Applied Chemistry Lab, Faculty of Pharmacy , University of Porto , Porto , Portugal
| | - Patrick J Kennedy
- a i3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto , Porto , Portugal.,b INEB - Instituto de Engenharia Biomédica , Universidade do Porto , Porto , Portugal.,c ICBAS - Instituto Ciências Biomédicas Abel Salazar , Universidade do Porto , Porto , Portugal.,g IPATIMUP - Instituto de Patologia e Imunologia Molecular Universidade do Porto , Porto , Portugal
| | | | - Bruno Sarmento
- a i3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto , Porto , Portugal.,b INEB - Instituto de Engenharia Biomédica , Universidade do Porto , Porto , Portugal.,c ICBAS - Instituto Ciências Biomédicas Abel Salazar , Universidade do Porto , Porto , Portugal
| |
Collapse
|
13
|
Beck A, Terral G, Debaene F, Wagner-Rousset E, Marcoux J, Janin-Bussat MC, Colas O, Van Dorsselaer A, Cianférani S. Cutting-edge mass spectrometry methods for the multi-level structural characterization of antibody-drug conjugates. Expert Rev Proteomics 2016; 13:157-83. [PMID: 26653789 DOI: 10.1586/14789450.2016.1132167] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Antibody drug conjugates (ADCs) are highly cytotoxic drugs covalently attached via conditionally stable linkers to monoclonal antibodies (mAbs) and are among the most promising next-generation empowered biologics for cancer treatment. ADCs are more complex than naked mAbs, as the heterogeneity of the conjugates adds to the inherent microvariability of the biomolecules. The development and optimization of ADCs rely on improving their analytical and bioanalytical characterization by assessing several critical quality attributes, namely the distribution and position of the drug, the amount of naked antibody, the average drug to antibody ratio, and the residual drug-linker and related product proportions. Here brentuximab vedotin (Adcetris) and trastuzumab emtansine (Kadcyla), the first and gold-standard hinge-cysteine and lysine drug conjugates, respectively, were chosen to develop new mass spectrometry (MS) methods and to improve multiple-level structural assessment protocols.
Collapse
Affiliation(s)
- Alain Beck
- a Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Guillaume Terral
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | - François Debaene
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | - Elsa Wagner-Rousset
- a Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Julien Marcoux
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | | | - Olivier Colas
- a Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Alain Van Dorsselaer
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | - Sarah Cianférani
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| |
Collapse
|
14
|
|