1
|
Oh MJ, Kim U, Kim S, Cho DS, Seo JA, Seo N, An HJ. Equivalence assessment of biotherapeutics with N- and O-glycosylation sites by sequential intact glycoform mass spectrometry (IGMS). J Pharm Biomed Anal 2023; 234:115558. [PMID: 37393692 DOI: 10.1016/j.jpba.2023.115558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
Glycosylation is a crucial attribute for biotherapeutics with significant impacts on quality, stability, safety, immunogenicity, pharmacokinetics, and efficacy. Therefore, to ensure consistent glycosylation, a systematic review of biotherapeutics is absolutely required including the variable glycan structure (micro-heterogeneity) and different occupancy at individual site (macro-heterogeneity) from drug design to upstream and downstream bioprocesses. Various methods have been used for glyco-characterization of biotherapeutics at the glycan, glycopeptide, and intact protein levels. In particular, intact protein analysis is considered a facile and rapid glycoform monitoring approach used throughout the product development lifecycle to determine suitable glycosylation lead candidates and reproducible product quality. However, intact glycoform characterization of diverse and complex biotherapeutics with multiple N- and O-glycosylation sites can be very challenging. To address this, a robust analytical platform that enables rapid and accurate characterization of a biotherapeutics with highly complex multiple glycosylation using two-step intact glycoform mass spectrometry has been developed. We used darbepoetin alfa, a second-generation EPO bearing multiple N- and O-glycosylation sites, as a model biotherapeutics to obtain integrated information on glycan heterogeneity and site occupancy through step-by-step MS of intact protein and enzyme-treated protein. In addition, we performed a comparative assessment of the heterogeneity from different products, confirming that our new method can efficiently evaluate glycosylation equivalence. This new strategy provides rapid and accurate information on the degree of glycosylation of a therapeutic glycoprotein with multiple glycosylation, which can be used to assess glycosylation similarity between batches and between biosimilar and reference during development and production.
Collapse
Affiliation(s)
- Myung Jin Oh
- Asia-Pacific Glycomics Reference Site, Daejeon 34134, South Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, South Korea
| | - Unyong Kim
- Biocomplete Co., Ltd., Seoul 08389, South Korea
| | - Sol Kim
- Asia-Pacific Glycomics Reference Site, Daejeon 34134, South Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, South Korea
| | - Dae Sik Cho
- Asia-Pacific Glycomics Reference Site, Daejeon 34134, South Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, South Korea
| | - Jung-A Seo
- Asia-Pacific Glycomics Reference Site, Daejeon 34134, South Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, South Korea
| | - Nari Seo
- Asia-Pacific Glycomics Reference Site, Daejeon 34134, South Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, South Korea
| | - Hyun Joo An
- Asia-Pacific Glycomics Reference Site, Daejeon 34134, South Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
2
|
Oh MJ, Lee SH, Kim U, An HJ. In-depth investigation of altered glycosylation in human haptoglobin associated cancer by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:496-518. [PMID: 34037272 DOI: 10.1002/mas.21707] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 05/08/2023]
Abstract
Serum haptoglobin (Hp), a highly sialylated biomolecule with four N-glycosylation sites, is a positive acute-phase response glycoprotein that acts as an immunomodulator. Hp has gained considerable attention due to its potential as a signature molecule that exhibits aberrant glycosylation in inflammatory disorders and malignancies. Its glycosylation can be analyzed qualitatively and quantitatively by various methods using mass spectrometry. In this review, we have provided a brief overview of Hp structure and biological function and described mass spectrometry-based techniques for analyzing glycosylation ranging from macroheterogeneity to microheterogeneity of Hp in diseases and cancer. The sugars on haptoglobin can be a sweet bridge to link the potential of cancer-specific biomarkers to clinically relevant applications.
Collapse
Affiliation(s)
- Myung Jin Oh
- Asia-Pacific Glycomics Reference Site, Daejeon, South Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
| | - Sung Hyeon Lee
- Department of Biomedical Research Center, Korea University Guro Hospital, Seoul, South Korea
| | - Unyoung Kim
- Division of Bioanalysis, Biocomplete Inc., Seoul, South Korea
| | - Hyun Joo An
- Asia-Pacific Glycomics Reference Site, Daejeon, South Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
3
|
Čaval T, Buettner A, Haberger M, Reusch D, Heck AJ. Discrepancies between High-Resolution Native and Glycopeptide-Centric Mass Spectrometric Approaches: A Case Study into the Glycosylation of Erythropoietin Variants. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2099-2104. [PMID: 33856811 PMCID: PMC8343523 DOI: 10.1021/jasms.1c00060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 05/04/2023]
Abstract
Glycosylation represents a critical quality attribute modulating a myriad of physiochemical properties and effector functions of biotherapeutics. Furthermore, a rising landscape of glycosylated biotherapeutics including biosimilars, biobetters, and fusion proteins harboring complicated and dynamic glycosylation profiles requires tailored analytical approaches capable of characterizing their heterogeneous nature. In this work, we perform in-depth evaluation of the glycosylation profiles of three glycoengineered variants of the widely used biotherapeutic erythropoietin. We analyzed these samples in parallel using a glycopeptide-centric liquid chromatography/mass spectrometry approach and high-resolution native mass spectrometry. Although for all of the studied variants the glycopeptide and native mass spectrometry data were in good qualitative agreement, we observed substantial quantitative differences arising from ionization deficiencies and unwanted neutral losses, in particular, for sialylated glycopeptides in the glycoproteomics approach. However, the latter provides direct information about glycosite localization. We conclude that the combined parallel use of native mass spectrometry and bottom-up glycoproteomics offers superior characterization of glycosylated biotherapeutics and thus provides a valuable attribute in the characterization of glycoengineered proteins and other complex biotherapeutics.
Collapse
Affiliation(s)
- Tomislav Čaval
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, Utrecht 3584 CH, The Netherlands
| | - Alexander Buettner
- Pharma
Technical Development, Roche Diagnostics
GmbH, Penzberg 82377, Germany
| | - Markus Haberger
- Pharma
Technical Development, Roche Diagnostics
GmbH, Penzberg 82377, Germany
| | - Dietmar Reusch
- Pharma
Technical Development, Roche Diagnostics
GmbH, Penzberg 82377, Germany
| | - Albert J.R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
4
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
5
|
Abstract
The glycosylation process is extremely heterogeneous, dynamic, and complex compared with any other post-translational modification of protein. In the context of recombinant glycoproteins, glycosylation is a critical attribute as glycans could dramatically alter protein functions and properties including activity, half-life, in vivo localization, stability, and, last but not least, immunogenicity. Liquid chromatography combined to mass spectrometry constitutes the most powerful analytical approach to achieve the comprehensive glycan profile description or comparison of glycoproteins. This chapter details a versatile yet straightforward LC-MS approach for sample preparation, analysis, and data interpretation, enabling the evaluation of site-specific N-glycosylation of recombinant glycoproteins.
Collapse
|
6
|
Oh MJ, Seo Y, Kim U, An HJ. In-Depth Glycan Characterization of Therapeutic Glycoproteins by Stepwise PGC SPE and LC-MS/MS. Methods Mol Biol 2021; 2271:121-131. [PMID: 33908004 DOI: 10.1007/978-1-0716-1241-5_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glycosylation of biologics, an important factor in pharmacological functions such as efficacy, safety, and biological activity, is easily affected by subtle changes in the cellular environment. Therefore, comprehensive and in-depth glycan characterization of therapeutic glycoproteins should be performed to ensure product quality and process consistency, but it is analytically challenging due to glycan microheterogeneity occurring in the glycan biosynthesis pathway. LC-based chromatographic separation combined with mass spectrometry (MS) has been widely used as a prominent tool for the qualitative and quantitative analysis of glycosylation of therapeutic glycoproteins. However, prior to LC/MS analysis, glycans are selectively captured and fractionated by solid-phase extraction (SPE) utilizing physicochemical characteristics for comprehensive characterization of a wide range of glycan heterogeneity on glycoengineered therapeutic proteins. In particular, porous graphitized carbon (PGC) SPE has been employed as a useful technique for the fractionation of native glycans having different sizes and polarities. Here, we describe a systematic method for comprehensive glycan characterization of therapeutic proteins using stepwise PGC SPE and LC/MS.
Collapse
Affiliation(s)
- Myung Jin Oh
- Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon, South Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
| | - Youngsuk Seo
- Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon, South Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
| | | | - Hyun Joo An
- Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon, South Korea. .,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea.
| |
Collapse
|
7
|
Capdeville P, Martin L, Cholet S, Damont A, Audran M, Ericsson M, Fenaille F, Marchand A. Evaluation of erythropoietin biosimilars Epotin™, Hemax® and Jimaixin™ by electrophoretic methods used for doping control analysis and specific N-glycan analysis revealed structural differences from original epoetin alfa drug Eprex®. J Pharm Biomed Anal 2020; 194:113750. [PMID: 33234415 DOI: 10.1016/j.jpba.2020.113750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/24/2022]
Abstract
Recombinant human erythropoietin (rEPO) biosimilars are copies of epoetin drugs developed after the first patents ended. However differences in the process of production can result in small structural differences when compared to the reference product. Differences in N-glycosylation profiles are of particular importance for rEPOs, because they can drastically impact the half-life in circulation and activity. Changes of structure can also impact electrophoretic profiles that are used to reveal the presence of a rEPO in a doping control sample. In this study three not well characterized biosimilars were evaluated (Jimaixin™ authorized in China, and Hemax® and Epotin™ authorized in Algeria). As these products could be used for doping, first their EPO profiles were determined using the antidoping methods (electrophoretic separation by the charge (isolectric focusing, IEF-PAGE) or the molecular weight (SDS-PAGE) and specific EPO immunodetection). Compared to the original epoetin alfa Eprex®, it revealed more basic isoforms for Epotin™ and Jimaixin™ after IEF-PAGE and a slightly lower molecular weight after SDS-PAGE in particular for Hemax®. To better understand the reason for these differences, EPO specific N-glycans were evaluated using two complementary approaches: MALDI-TOF mass spectrometry (MS) and hydrophilic interaction liquid chromatography (HILIC) with fluorescence detection. All three biosimilars presented a significant decrease in the major glycan forms of Eprex® along with an increase in less complex forms. Jimaixin™ and Epotin™ presented also a lower amount of fully sialylated forms. HILIC method also showed that O-acetylation level of sialic acid residues might vary from one rEPO to the other.
Collapse
Affiliation(s)
- Perrine Capdeville
- Analyses Department, Agence Française de Lutte contre le Dopage (AFLD), Châtenay-Malabry, France
| | - Laurent Martin
- Analyses Department, Agence Française de Lutte contre le Dopage (AFLD), Châtenay-Malabry, France
| | - Sophie Cholet
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif sur Yvette, France
| | - Annelaure Damont
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif sur Yvette, France
| | - Michel Audran
- Analyses Department, Agence Française de Lutte contre le Dopage (AFLD), Châtenay-Malabry, France
| | - Magnus Ericsson
- Analyses Department, Agence Française de Lutte contre le Dopage (AFLD), Châtenay-Malabry, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif sur Yvette, France
| | - Alexandre Marchand
- Analyses Department, Agence Française de Lutte contre le Dopage (AFLD), Châtenay-Malabry, France.
| |
Collapse
|
8
|
Glycomics studies using sialic acid derivatization and mass spectrometry. Nat Rev Chem 2020; 4:229-242. [PMID: 37127981 DOI: 10.1038/s41570-020-0174-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2020] [Indexed: 12/13/2022]
Abstract
Proteins can undergo glycosylation during and/or after translation to afford glycoconjugates, which are often secreted by a cell or populate cell surfaces. Changes in the glycan portion can have a strong influence on a glycoconjugate and are associated with a multitude of human pathologies. Of particular interest are sialylated glycoconjugates, which exist as constitutional isomers that differ in their linkages (α2,3, α2,6, α2,8 or α2,9) between sialic acids and their neighbouring monosaccharides. In general, mass spectrometry enables the rapid and sensitive characterization of glycosylation, but there are challenges specific to identifying and (relatively) quantifying sialic acid isomers. These challenges can be addressed using linkage-specific methodologies for sialic acid derivatization, after which mass spectrometry can enable product identification. This Review is concerned with the new and important derivatization approaches reported in the past decade, which have been implemented in various mass-spectrometry-glycomics workflows and have found clinical glycomics applications. The convenience and wide applicability of the approaches make them attractive for studies of sialylation in different types of glycoconjugate.
Collapse
|
9
|
Chung JH, Hong SH, Seo N, Kim TS, An HJ, Lee P, Shin EC, Kim HM. Structure-based glycoengineering of interferon lambda 4 enhances its productivity and anti-viral potency. Cytokine 2019; 125:154833. [PMID: 31479875 PMCID: PMC7129780 DOI: 10.1016/j.cyto.2019.154833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 01/12/2023]
Abstract
Structure-based glycoengineering was applied to improve IFNλ4′s expression level. Model of IFNλ4 signaling complex was used to select de novo N-glycosylation sites. Glycoengineered IFNλ4 variants showed enhanced expression and anti-viral activity.
Interferon lambda 4 (IFNλ4) has been recently known and studied for its role in hepatitis C virus (HCV) infection, but its clinical potential is significantly hampered due to its poor expression in vitro. Our study reports the successful production of IFNλ4 from a mammalian cell line through a glycoengineering and structure-based approach. We introduced de novo N-glycosylation of IFNλ4, guided by structural analysis, and produced IFNλ4 variants in Expi293F that displayed improved expression and potency. To preserve the structure and functionality of IFNλ4, the model structure of the IFNλ4 signaling complex was analyzed and the N-glycosylation candidate sites were selected. The receptor binding activity of engineered IFNλ4 variants and their receptor-mediated signaling pathway were similar to the E. coli version of IFNλ4 (eIFNλ4), while the antiviral activity and induction levels of interferon-stimulated gene (ISG) were all more robust in our variants. Our engineered IFNλ4 variants may be further developed for clinical applications and utilized in basic research to decipher the immunological roles of IFNλ4.
Collapse
Affiliation(s)
- Jae-Hee Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seon-Hui Hong
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Nari Seo
- Graduate School of Analytical Science & Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tae-Shin Kim
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science & Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Pedro Lee
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Eui-Cheol Shin
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Ho Min Kim
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea.
| |
Collapse
|
10
|
Kwon O, Oh IU, Oh MJ, Hong SH, Kim CW, An HJ. Validation of Monosaccharide Composition Assay Using HPLC‐UV Platform for Monoclonal Antibody Products in Compliance with ICH Guideline. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ohseok Kwon
- Biopharmaceuticals and Herbal Medicine Evaluation DepartmentNational Institute of Food and Drug Safety Evaluation Cheongju 28159 South Korea
- Department of Biotechnology, College of Life Sciences and BiotechnologyKorea University Seoul 02841 South Korea
| | - Il Ung Oh
- Biopharmaceuticals and Herbal Medicine Evaluation DepartmentNational Institute of Food and Drug Safety Evaluation Cheongju 28159 South Korea
| | - Myung Jin Oh
- Graduate School of Analytical Science and TechnologyChungnam National University Daejeon 34134 South Korea
- Asia‐Pacific Glycomics Reference SiteChungnam National University Daejeon 34134 South Korea
| | - Seung Hwa Hong
- Pharmaceutical and Medical Device Research DepartmentNational Institute of Food and Drug Safety Evaluation Cheongju 28159 South Korea
| | - Chan Wha Kim
- Department of Biotechnology, College of Life Sciences and BiotechnologyKorea University Seoul 02841 South Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and TechnologyChungnam National University Daejeon 34134 South Korea
- Asia‐Pacific Glycomics Reference SiteChungnam National University Daejeon 34134 South Korea
| |
Collapse
|
11
|
Háda V, Bagdi A, Bihari Z, Timári SB, Fizil Á, Szántay C. Recent advancements, challenges, and practical considerations in the mass spectrometry-based analytics of protein biotherapeutics: A viewpoint from the biosimilar industry. J Pharm Biomed Anal 2018; 161:214-238. [PMID: 30205300 DOI: 10.1016/j.jpba.2018.08.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 01/22/2023]
Abstract
The extensive analytical characterization of protein biotherapeutics, especially of biosimilars, is a critical part of the product development and registration. High-resolution mass spectrometry became the primary analytical tool used for the structural characterization of biotherapeutics. Its high instrumental sensitivity and methodological versatility made it possible to use this technique to characterize both the primary and higher-order structure of these proteins. However, even by using high-end instrumentation, analysts face several challenges with regard to how to cope with industrial and regulatory requirements, that is, how to obtain accurate and reliable analytical data in a time- and cost-efficient way. New sample preparation approaches, measurement techniques and data evaluation strategies are available to meet those requirements. The practical considerations of these methods are discussed in the present review article focusing on hot topics, such as reliable and efficient sequencing strategies, minimization of artefact formation during sample preparation, quantitative peptide mapping, the potential of multi-attribute methodology, the increasing role of mass spectrometry in higher-order structure characterization and the challenges of MS-based identification of host cell proteins. On the basis of the opportunities in new instrumental techniques, methodological advancements and software-driven data evaluation approaches, for the future one can envision an even wider application area for mass spectrometry in the biopharmaceutical industry.
Collapse
Affiliation(s)
- Viktor Háda
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary.
| | - Attila Bagdi
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | - Zsolt Bihari
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | | | - Ádám Fizil
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | - Csaba Szántay
- Spectroscopic Research Department, Gedeon Richter Plc, Hungary.
| |
Collapse
|
12
|
Szabo Z, Thayer JR, Reusch D, Agroskin Y, Viner R, Rohrer J, Patil SP, Krawitzky M, Huhmer A, Avdalovic N, Khan SH, Liu Y, Pohl C. High Performance Anion Exchange and Hydrophilic Interaction Liquid Chromatography Approaches for Comprehensive Mass Spectrometry-Based Characterization of the N-Glycome of a Recombinant Human Erythropoietin. J Proteome Res 2018; 17:1559-1574. [DOI: 10.1021/acs.jproteome.7b00862] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zoltan Szabo
- ThermoFisher Scientific, 1228 Titan Way, Sunnyvale, California 94088, United States
| | - James R. Thayer
- ThermoFisher Scientific, 1228 Titan Way, Sunnyvale, California 94088, United States
| | - Dietmar Reusch
- Roche Diagnostics GmbH, 2 Nonnenwald, Penzberg 82377, Germany
| | - Yury Agroskin
- ThermoFisher Scientific, 1228 Titan Way, Sunnyvale, California 94088, United States
| | - Rosa Viner
- ThermoFisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Jeff Rohrer
- ThermoFisher Scientific, 1214 Oakmead Parkway, Sunnyvale, California 94085, United States
| | - Sachin P. Patil
- ThermoFisher Scientific, 1214 Oakmead Parkway, Sunnyvale, California 94085, United States
| | - Michael Krawitzky
- ThermoFisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Andreas Huhmer
- ThermoFisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Nebojsa Avdalovic
- ThermoFisher Scientific, 1228 Titan Way, Sunnyvale, California 94088, United States
| | - Shaheer H. Khan
- ThermoFisher Scientific, 180 Oyster Point Blvd, South San Francisco, California 94080, United States
| | - Yan Liu
- ThermoFisher Scientific, 1228 Titan Way, Sunnyvale, California 94088, United States
| | - Christopher Pohl
- ThermoFisher Scientific, 1228 Titan Way, Sunnyvale, California 94088, United States
| |
Collapse
|
13
|
|