1
|
Fedeles BI, Bhardwaj R, Ishikawa Y, Khumsubdee S, Krappitz M, Gubina N, Volpe I, Andrade DC, Westergerling P, Staudner T, Campolo J, Liu SS, Dong K, Cai Y, Rehman M, Gallagher AR, Ruchirawat S, Croy RG, Essigmann JM, Fedeles SV, Somlo S. A synthetic agent ameliorates polycystic kidney disease by promoting apoptosis of cystic cells through increased oxidative stress. Proc Natl Acad Sci U S A 2024; 121:e2317344121. [PMID: 38241440 PMCID: PMC10823221 DOI: 10.1073/pnas.2317344121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/15/2023] [Indexed: 01/21/2024] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic cause of chronic kidney disease and the fourth leading cause of end-stage kidney disease, accounting for over 50% of prevalent cases requiring renal replacement therapy. There is a pressing need for improved therapy for ADPKD. Recent insights into the pathophysiology of ADPKD revealed that cyst cells undergo metabolic changes that up-regulate aerobic glycolysis in lieu of mitochondrial respiration for energy production, a process that ostensibly fuels their increased proliferation. The present work leverages this metabolic disruption as a way to selectively target cyst cells for apoptosis. This small-molecule therapeutic strategy utilizes 11beta-dichloro, a repurposed DNA-damaging anti-tumor agent that induces apoptosis by exacerbating mitochondrial oxidative stress. Here, we demonstrate that 11beta-dichloro is effective in delaying cyst growth and its associated inflammatory and fibrotic events, thus preserving kidney function in perinatal and adult mouse models of ADPKD. In both models, the cyst cells with homozygous inactivation of Pkd1 show enhanced oxidative stress following treatment with 11beta-dichloro and undergo apoptosis. Co-administration of the antioxidant vitamin E negated the therapeutic benefit of 11beta-dichloro in vivo, supporting the conclusion that oxidative stress is a key component of the mechanism of action. As a preclinical development primer, we also synthesized and tested an 11beta-dichloro derivative that cannot directly alkylate DNA, while retaining pro-oxidant features. This derivative nonetheless maintains excellent anti-cystic properties in vivo and emerges as the lead candidate for development.
Collapse
Affiliation(s)
- Bogdan I. Fedeles
- Departments of Biological Engineering, Chemistry and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Rishi Bhardwaj
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, CT06510
| | - Yasunobu Ishikawa
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, CT06510
| | - Sakunchai Khumsubdee
- Departments of Biological Engineering, Chemistry and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok10210, Thailand
| | - Matteus Krappitz
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, CT06510
| | - Nina Gubina
- Departments of Biological Engineering, Chemistry and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino142290, Russia
| | - Isabel Volpe
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, CT06510
| | - Denise C. Andrade
- Departments of Biological Engineering, Chemistry and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Parisa Westergerling
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, CT06510
| | - Tobias Staudner
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, CT06510
| | - Jake Campolo
- Departments of Biological Engineering, Chemistry and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Sally S. Liu
- Departments of Biological Engineering, Chemistry and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Ke Dong
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, CT06510
| | - Yiqiang Cai
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, CT06510
| | - Michael Rehman
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, CT06510
| | - Anna-Rachel Gallagher
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, CT06510
| | - Somsak Ruchirawat
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok10210, Thailand
| | - Robert G. Croy
- Departments of Biological Engineering, Chemistry and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - John M. Essigmann
- Departments of Biological Engineering, Chemistry and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Sorin V. Fedeles
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, CT06510
| | - Stefan Somlo
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, New Haven, CT06510
| |
Collapse
|
2
|
Zarewa SA, Binobaid L, Sulaiman AAA, Sobeai HMA, Alotaibi M, Alhoshani A, Isab AA. Synthesis, Characterization, and Anticancer Activity of Phosphanegold(i) Complexes of 3-Thiosemicarbano-butan-2-one Oxime. Biomedicines 2023; 11:2512. [PMID: 37760953 PMCID: PMC10525815 DOI: 10.3390/biomedicines11092512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Four novel phosphanegold(I) complexes of the type [Au(PR3)(DMT)].PF6 (1-4) were synthesized from 3-Thiosemicarbano-butan-2-one oxime ligand (TBO) and precursors [Au(PR3)Cl], (where R = methyl (1), ethyl (2), tert-butyl (3), and phenyl (4)). The resulting complexes were characterized by elemental analyses and melting point as well as various spectroscopic techniques, including FTIR and (1H, 13C, and 31P) NMR spectroscopy. The spectroscopic data confirmed the coordination of TBO ligands to phosphanegold(I) moiety. The solution chemistry of complexes 1-4 indicated their stability in both dimethyl sulfoxide (DMSO) and a mixture of EtOH:H2O (1:1). In vitro cytotoxicity of the complexes was evaluated relative to cisplatin using an MTT assay against three different cancer cell lines: HCT116 (human colon cancer), MDA-MB-231 (human breast cancer), and B16 (murine skin cancer). Complexes 2, 3, and 4 exhibited significant cytotoxic effects against all tested cancer cell lines and showed significantly higher activity than cisplatin. To elucidate the mechanism underlying the cytotoxic effects of the phosphanegold(I) TBO complexes, various assays were employed, including mitochondrial membrane potential, ROS production, and gene expression analyses. The data obtained suggest that complex 2 exerts potent anticancer activity against breast cancer cells (MDA-MB-231) through the induction of oxidative stress, mitochondrial dysfunction, and apoptosis. Gene expression analyses showed an increase in the activity of the proapoptotic gene caspase-3 and a reduction in the activity of the antiapoptotic gene BCL-xL, which supported the findings that apoptosis had occurred.
Collapse
Affiliation(s)
- Sani A. Zarewa
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
| | - Lama Binobaid
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (L.B.); (H.M.A.S.); (M.A.); (A.A.)
| | - Adam A. A. Sulaiman
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
- Core Research Facilities (CRF), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Homood M. As Sobeai
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (L.B.); (H.M.A.S.); (M.A.); (A.A.)
| | - Moureq Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (L.B.); (H.M.A.S.); (M.A.); (A.A.)
| | - Ali Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (L.B.); (H.M.A.S.); (M.A.); (A.A.)
| | - Anvarhusein A. Isab
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
3
|
Behnam B, Taghizadeh-Hesary F. Mitochondrial Metabolism: A New Dimension of Personalized Oncology. Cancers (Basel) 2023; 15:4058. [PMID: 37627086 PMCID: PMC10452105 DOI: 10.3390/cancers15164058] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Energy is needed by cancer cells to stay alive and communicate with their surroundings. The primary organelles for cellular metabolism and energy synthesis are mitochondria. Researchers recently proved that cancer cells can steal immune cells' mitochondria using nanoscale tubes. This finding demonstrates the dependence of cancer cells on normal cells for their living and function. It also denotes the importance of mitochondria in cancer cells' biology. Emerging evidence has demonstrated how mitochondria are essential for cancer cells to survive in the harsh tumor microenvironments, evade the immune system, obtain more aggressive features, and resist treatments. For instance, functional mitochondria can improve cancer resistance against radiotherapy by scavenging the released reactive oxygen species. Therefore, targeting mitochondria can potentially enhance oncological outcomes, according to this notion. The tumors' responses to anticancer treatments vary, ranging from a complete response to even cancer progression during treatment. Therefore, personalized cancer treatment is of crucial importance. So far, personalized cancer treatment has been based on genomic analysis. Evidence shows that tumors with high mitochondrial content are more resistant to treatment. This paper illustrates how mitochondrial metabolism can participate in cancer resistance to chemotherapy, immunotherapy, and radiotherapy. Pretreatment evaluation of mitochondrial metabolism can provide additional information to genomic analysis and can help to improve personalized oncological treatments. This article outlines the importance of mitochondrial metabolism in cancer biology and personalized treatments.
Collapse
Affiliation(s)
- Babak Behnam
- Department of Regulatory Affairs, Amarex Clinical Research, NSF International, Germantown, MD 20874, USA
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran 1445613131, Iran
- Department of Radiation Oncology, Iran University of Medical Sciences, Tehran 1445613131, Iran
| |
Collapse
|
4
|
Teng Y. Remodeling of Mitochondria in Cancer and Other Diseases. Int J Mol Sci 2023; 24:ijms24097693. [PMID: 37175401 PMCID: PMC10178075 DOI: 10.3390/ijms24097693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria are highly dynamic and responsive organelles capable of fission and fusion and are a hub of diverse signaling pathways that are fundamental to cellular homeostasis, energy production, metabolism, survival, and death [...].
Collapse
Affiliation(s)
- Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, School of Medicine, Atlanta, GA 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
5
|
Xiang D, Yang W, Fang Z, Mao J, Yan Q, Li L, Tan J, Yu C, Qian J, Tang D, Pan X, Cheng H, Sun D. Agrimol B inhibits colon carcinoma progression by blocking mitochondrial function through the PGC-1α/NRF1/TFAM signaling pathway. Front Oncol 2022; 12:1055126. [PMID: 36591497 PMCID: PMC9794846 DOI: 10.3389/fonc.2022.1055126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Background The activation of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) stimulates the transcription of the downstream target proteins, mitochondrial transcription factor A (TFAM) and nuclear respiratory factor 1 (NRF1), which induces mitochondrial biogenesis and promotes colorectal tumorigenesis. Agrimol B (Agr) is a constituent of Agrimonia pilosa Ledeb. that exerts anticancer effects. Herein, we aimed to investigate the antitumor activity of Agr and its mechanism of action. Methods The interaction between Agr and PGC-1α was predicted by molecular docking. After the treatment with different concentrations of Agr (0, 144, 288, and 576 nM), the cell viability, migration rate, proliferation rate, and apoptosis rate of human colon cancer HCT116 cells were determined. Mitochondrial activity, cellular reactive oxygen species (ROS), and mitochondrial membrane potential were assessed to measure the regulatory effect of Agr on mitochondrial function. Western blotting (WB) assay was used to examine the expression of PGC-1α, NRF1, and TFAM, as well as of the pro-apoptotic proteins, Bax and Caspase-3, and the antiapoptotic protein (Bcl-2). Finally, subcutaneous tumor xenograft model mice were used to evaluate the effect of Agr on colorectal cancer (CRC) in vivo. Results The molecular docking results revealed a high likelihood of Agr interacting with PGC-1α. Agr inhibited the proliferation and migration of HCT116 cells, promoted ROS production and mitochondrial oxidative stress, inhibited mitochondrial activity, and decreased mitochondrial membrane potential. Agr induced cell apoptosis and, in combination with PGC-1α, impaired mitochondrial biogenesis and suppressed the expression of NRF1 and TFAM. Agr also suppressed the expression of Bcl-2 and Cleaved-Caspase-3 and increased the expression of Bax and Caspase-3. In addition, the in vivo antitumor effect and mechanism of Agr were confirmed by using a subcutaneous tumor xenograft mouse model. Conclusions Our findings demonstrated that Agr regulates the expression of PGC-1α, thereby inducing mitochondrial dysfunction and promoting tumor cell apoptosis. This work highlights the potential of Agr as a promising therapeutic candidate in CRC.
Collapse
Affiliation(s)
- Dongyang Xiang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjuan Yang
- Oncology Department, Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, China
| | - Zihan Fang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jialei Mao
- Oncology Department, Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, China
| | - Qiuying Yan
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liu Li
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China,The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiani Tan
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China,The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chengtao Yu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China,The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Qian
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China,The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China,Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Dongxin Tang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaoting Pan
- Oncology Department, Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, China,*Correspondence: Haibo Cheng, ; Xiaoting Pan, ; Dongdong Sun,
| | - Haibo Cheng
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China,The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China,Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China,*Correspondence: Haibo Cheng, ; Xiaoting Pan, ; Dongdong Sun,
| | - Dongdong Sun
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China,School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,*Correspondence: Haibo Cheng, ; Xiaoting Pan, ; Dongdong Sun,
| |
Collapse
|
6
|
Xin Q, Ji Q, Zhang Y, Ma W, Tian B, Liu Y, Chen Y, Wang F, Zhang R, Wang X, Yuan J. Aberrant ROS Served as an Acquired Vulnerability of Cisplatin-Resistant Lung Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1112987. [PMID: 35770045 PMCID: PMC9236771 DOI: 10.1155/2022/1112987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 12/28/2022]
Abstract
Lung cancer has become a global health issue in recent decades. Approximately 80-85% of cases are non-small-cell lung cancer (NSCLC). Despite the high rate of resistance, cisplatin-base chemotherapy is still the main treatment for NSCLC patients. Thus, overcoming cisplatin resistance is urgently needed in NSCLC therapy. In this study, we identify NADPH metabolism and reactive oxygen species (ROS) levels as the main causes accounting for cisplatin resistance. Based on a small panel consisting of common chemotherapy drugs or compounds, APR-246 is proved to be an effective compound targeting cisplatin-resistant NSCLC cells. APR-246 specially inhibits proliferation and colony formation of cisplatin-resistant cells. In details, APR-246 can significantly cause G0/G1 accumulation and S phase arrest of cisplatin resistant cells and gives rise to severe mitochondria dysfunction as well as elevated apoptosis. Further study proves that it is the aberrant ROS levels as well as NRF2/SLC7A11/GSH axis dysfunction accounting for the specific antitumor effects of APR-246. Scavenging ROS with N-acetylcysteine (NAC) disrupts the inhibitory effect of APR-246 on cisplatin-resistant cells. Mechanistically, NRF2 is specifically degraded by the proteasome following its own ubiquitylation in APR-246-treated cisplatin-resistant cells, which in turn decreases NRF2/SLC7A11/GSH axis activity. Our study provides new insights into the biology driving cisplatin resistance of lung cancer and highlights APR-246 as a potential therapeutic reagent for overcoming cisplatin resistance.
Collapse
Affiliation(s)
- Qian Xin
- Central Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Qinghong Ji
- Department of Obstetrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Ying Zhang
- Department of Respiratory Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Weihong Ma
- Department of Obstetrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Baoqing Tian
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yanli Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yunsong Chen
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Fei Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Ran Zhang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xingwu Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jupeng Yuan
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, Jinan, Shandong 250033, China
| |
Collapse
|
7
|
Lang L, Loveless R, Dou J, Lam T, Chen A, Wang F, Sun L, Juarez J, Qin ZS, Saba NF, Shay C, Teng Y. ATAD3A mediates activation of RAS-independent mitochondrial ERK1/2 signaling, favoring head and neck cancer development. J Exp Clin Cancer Res 2022; 41:43. [PMID: 35093151 PMCID: PMC8800319 DOI: 10.1186/s13046-022-02274-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/25/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Targeting mitochondrial oncoproteins presents a new concept in the development of effective cancer therapeutics. ATAD3A is a nuclear-encoded mitochondrial enzyme contributing to mitochondrial dynamics, cholesterol metabolism, and signal transduction. However, its impact and underlying regulatory mechanisms in cancers remain ill-defined. METHODS We used head and neck squamous cell carcinoma (HNSCC) as a research platform and achieved gene depletion by lentiviral shRNA and CRISPR/Cas9. Molecular alterations were examined by RNA-sequencing, phospho-kinase profiling, Western blotting, RT-qPCR, immunohistochemistry, and immunoprecipitation. Cancer cell growth was assessed by MTT, colony formation, soft agar, and 3D cultures. The therapeutic efficacy in tumor development was evaluated in orthotopic tongue tumor NSG mice. RESULTS ATAD3A is highly expressed in HNSCC tissues and cell lines. Loss of ATAD3A expression suppresses HNSCC cell growth and elicits tumor regression in orthotopic tumor-bearing mice, whereas gain of ATAD3A expression produces the opposite effects. From a mechanistic perspective, the tumor suppression induced by the overexpression of the Walker A dead mutant of ATAD3A (K358) produces a potent dominant-negative effect due to defective ATP-binding. Moreover, ATAD3A binds to ERK1/2 in the mitochondria of HNSCC cells in the presence of VDAC1, and this interaction is essential for the activation of mitochondrial ERK1/2 signaling. Most importantly, the ATAD3A-ERK1/2 signaling axis drives HNSCC development in a RAS-independent fashion and, thus, tumor suppression is more effectively achieved when ATAD3A knockout is combined with RAS inhibitor treatment. CONCLUSIONS These findings highlight the novel function of ATAD3A in regulating mitochondrial ERK1/2 activation that favors HNSCC development. Combined targeting of ATAD3A and RAS signaling may potentiate anticancer activity for HNSCC therapeutics.
Collapse
Affiliation(s)
- Liwei Lang
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Reid Loveless
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Juan Dou
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Tiffany Lam
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Alex Chen
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Fang Wang
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Li Sun
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Jakeline Juarez
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Zhaohui Steve Qin
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, 30322, USA
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Chloe Shay
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory, University, Atlanta, GA, 30322, USA
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA.
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA.
| |
Collapse
|
8
|
Bastidas H, Araya-Valdés G, Cortés G, Jara JA, Catalán M. Pharmacological Effects of Caffeic Acid and Its Derivatives in Cancer: New Targeted Compounds for the Mitochondria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:213-225. [DOI: 10.1007/5584_2022_718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Pérez-Amado CJ, Bazan-Cordoba A, Hidalgo-Miranda A, Jiménez-Morales S. Mitochondrial Heteroplasmy Shifting as a Potential Biomarker of Cancer Progression. Int J Mol Sci 2021; 22:7369. [PMID: 34298989 PMCID: PMC8304746 DOI: 10.3390/ijms22147369] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is a serious health problem with a high mortality rate worldwide. Given the relevance of mitochondria in numerous physiological and pathological mechanisms, such as adenosine triphosphate (ATP) synthesis, apoptosis, metabolism, cancer progression and drug resistance, mitochondrial genome (mtDNA) analysis has become of great interest in the study of human diseases, including cancer. To date, a high number of variants and mutations have been identified in different types of tumors, which coexist with normal alleles, a phenomenon named heteroplasmy. This mechanism is considered an intermediate state between the fixation or elimination of the acquired mutations. It is suggested that mutations, which confer adaptive advantages to tumor growth and invasion, are enriched in malignant cells. Notably, many recent studies have reported a heteroplasmy-shifting phenomenon as a potential shaper in tumor progression and treatment response, and we suggest that each cancer type also has a unique mitochondrial heteroplasmy-shifting profile. So far, a plethora of data evidencing correlations among heteroplasmy and cancer-related phenotypes are available, but still, not authentic demonstrations, and whether the heteroplasmy or the variation in mtDNA copy number (mtCNV) in cancer are cause or consequence remained unknown. Further studies are needed to support these findings and decipher their clinical implications and impact in the field of drug discovery aimed at treating human cancer.
Collapse
Affiliation(s)
- Carlos Jhovani Pérez-Amado
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (C.J.P.-A.); (A.B.-C.); (A.H.-M.)
- Programa de Maestría y Doctorado, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Amellalli Bazan-Cordoba
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (C.J.P.-A.); (A.B.-C.); (A.H.-M.)
- Programa de Maestría y Doctorado, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (C.J.P.-A.); (A.B.-C.); (A.H.-M.)
| | - Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (C.J.P.-A.); (A.B.-C.); (A.H.-M.)
| |
Collapse
|
10
|
Makrecka-Kuka M, Dimitrijevs P, Domracheva I, Jaudzems K, Dambrova M, Arsenyan P. Fused isoselenazolium salts suppress breast cancer cell growth by dramatic increase in pyruvate-dependent mitochondrial ROS production. Sci Rep 2020; 10:21595. [PMID: 33299068 PMCID: PMC7725824 DOI: 10.1038/s41598-020-78620-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
The development of targeted drugs for the treatment of cancer remains an unmet medical need. This study was designed to investigate the mechanism underlying breast cancer cell growth suppression caused by fused isoselenazolium salts. The ability to suppress the proliferation of malignant and normal cells in vitro as well as the effect on NAD homeostasis (NAD+, NADH, and NMN levels), NAMPT inhibition and mitochondrial functionality were studied. The interactions of positively charged isoselenazolium salts with the negatively charged mitochondrial membrane model were assessed. Depending on the molecular structure, fused isoselenazolium salts display nanomolar to high micromolar cytotoxicities against MCF-7 and 4T1 breast tumor cell lines. The studied compounds altered NMN, NAD+, and NADH levels and the NAD+/NADH ratio. Mitochondrial functionality experiments showed that fused isoselenazolium salts inhibit pyruvate-dependent respiration but do not directly affect complex I of the electron transfer system. Moreover, the tested compounds induce an immediate dramatic increase in the production of reactive oxygen species. In addition, the isoselenazolothiazolium derivative selectively binds to cardiolipin in a liposomal model. Isoselenazolium salts may be a promising platform for the development of potent drug candidates for anticancer therapy that impact mitochondrial pyruvate-dependent metabolism in breast cancer cells.
Collapse
Affiliation(s)
| | - Pavels Dimitrijevs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, 1006, Latvia.,Riga Stradins University, Dzirciema 16, Riga, 1007, Latvia
| | - Ilona Domracheva
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, 1006, Latvia
| | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, 1006, Latvia
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, 1006, Latvia.,Riga Stradins University, Dzirciema 16, Riga, 1007, Latvia
| | - Pavel Arsenyan
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, 1006, Latvia.
| |
Collapse
|
11
|
Al-Bari MAA. Co-targeting of lysosome and mitophagy in cancer stem cells with chloroquine analogues and antibiotics. J Cell Mol Med 2020; 24:11667-11679. [PMID: 32935427 PMCID: PMC7578893 DOI: 10.1111/jcmm.15879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
The catabolic autophagy eliminates cytoplasmic components and organelles via lysosomes. Non‐selective bulk autophagy and selective autophagy (mitophagy) are linked in intracellular homeostasis both normal and cancer cells. Autophagy has complex and paradoxical dual role in cancers; it can play either tumour suppressor or tumour promoter depending on the tumour type, stage, microenvironment and genetic context. Cancer stem cells (CSCs) cause tumour recurrence and promote resistant to therapy for driving poor clinical consequences. Thus, new healing strategies are urgently needed to annihilate and eradicate CSCs. As chloroquine (CQ) analogues show positive clinical outcome in several clinical trials either standalone or combination with several chemotherapies. Moreover, CQ analogues are known to eliminate CSCs via altering DNA methylation. However, several obstacles such as higher concentrations and dose‐dependent toxicity are noticeable in the treatment of cancers. As tumour cells predominantly rely on mitochondrial actions, mitochondrial targeting FDA‐approved antibiotics are reported to effectively eradicate CSCs alone or combination with chemotherapy. However, antibiotics cause metabolic glycolytic shift in cancer cells for survival and repopulation. This review will provide a sketch of the inhibiting roles of current chloroquine analogues and antibiotic combination in CSC autophagy process and discuss the possibility that pre‐clinical and clinical potential therapeutic strategy for anticancer therapy.
Collapse
|
12
|
Ma DY, Lai Q, Peng KJ, Wang LL, Li ZX, Liu LJ, Luo ZY, Liu SY. Synthesis and anti-OXPHOS, antitumor activities of DLC modified spinosyn derivatives. Bioorg Med Chem Lett 2020; 30:127047. [PMID: 32139325 DOI: 10.1016/j.bmcl.2020.127047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/31/2020] [Accepted: 02/15/2020] [Indexed: 10/25/2022]
Abstract
A series of DLC (delocalized lipophilic cation) modified spinosyn derivatives were synthesized and evaluated for antitumor efficacies both in vitro and in vivo. Cancer cell based antiproliferative assays indicated that the more lipophilic derivatives had stronger inhibitory effects on the tested cancer cell lines. Compound 7b and 8b exhibited strong anti-OXPHOS and apoptosis inducing ability. Notable antitumor efficacies of 7b (5 mg/kg) and 8b (2.5 mg/kg) were observed in the in vivo tumor xenograft experiments, however, lethal toxicities were observed on higher dosages. Our findings indicated that DLC modification is a viable strategy to enhance the anti-OXPHOS and antitumor efficacies of spinosyn derivatives.
Collapse
Affiliation(s)
- Da-You Ma
- School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| | - Qin Lai
- School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Kun-Jian Peng
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Long-Long Wang
- School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Zeng-Xia Li
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Li-Jun Liu
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Zhi-Yong Luo
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Su-You Liu
- School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
13
|
CPI-613 rewires lipid metabolism to enhance pancreatic cancer apoptosis via the AMPK-ACC signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:73. [PMID: 32345326 PMCID: PMC7187515 DOI: 10.1186/s13046-020-01579-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/22/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pancreatic cancer remains one of the most rapidly progressive and deadly malignancies worldwide. Current treatment regimens only result in small improvements in overall survival for patients with this cancer type. CPI-613 (Devimistat), a novel lipoate analog inhibiting mitochondrial metabolism, shows the new hope for pancreatic cancer treatment as an efficient and well-tolerated therapeutic option treated alone or in combination with chemotherapy. METHODS Pancreatic cancer cells growing in planar 2D cultures and 3D scaffold were used as research platforms. Cell viability was measured by MTT and alamarBlue, and apoptosis was assessed by JC-1 staining and flow cytometry with Annexin V-FITC/PI staining. The mechanism behind CPI-613 action was analyzed by western blot, transmission electron microscopy, and lipolysis assay kits, in the presence or absence of additional signaling pathway inhibitors or gene modifications. RESULTS CPI-613 exhibits anticancer activity in pancreatic cancer cells by triggering ROS-associated apoptosis, which is accompanied by increased autophagy and repressed lipid metabolism through activating the AMPK signaling. Intriguingly, ACC, the key enzyme modulating lipid metabolism, is identified as a vital target of CPI-613, which is inactivated in an AMPK-dependent manner and influences apoptotic process upon CPI-613. Blockade or enhancement of autophagic process does not increase or blunt apoptosis to CPI-613, but inhibition of the AMPK-ACC signaling significantly attenuates apoptosis induced by CPI-613, suggesting CPI-613-mediated lipid metabolism reduction contributes to its cytotoxicity in pancreatic cancer cells. CONCLUSIONS These findings explore the critical role of lipid metabolism in apoptosis, providing new insights into the AMPK-ACC signaling axis in crosstalk between lipid metabolism and apoptosis in CPI-613 treatment.
Collapse
|
14
|
Lang L, Teng Y. Using Genome-Editing Tools to Develop a Novel In Situ Coincidence Reporter Assay for Screening ATAD3A Transcriptional Inhibitors. Methods Mol Biol 2020; 2138:159-166. [PMID: 32219745 PMCID: PMC8552142 DOI: 10.1007/978-1-0716-0471-7_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Transgene-based reporter gene assays have been used for discovery of inhibitors targeting vital gene transcription. In traditional assays, the reporter gene is commonly fused with a cloned promoter and integrated into a random genomic location. This has been widely applied but significantly dampened by disadvantages, including incomplete cis-acting elements, the influence of foreign epigenetic environments, and generation of false hits that disrupt the luciferase reporter activity. Therefore, there is a need to develop novel strategies for developing in situ reporter assays closely mimicking endogenous gene expression without disrupting its function. By employing the CRISPR-Cas9 system, we developed an effective in situ coincidence reporter system with a selection marker in the endogenous locus of ATAD3A, which provides a means of screening for transcription-targeted lead compounds with high confidence.
Collapse
Affiliation(s)
- Liwei Lang
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA.
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
- Department of Medical Laboratory, Imaging and Radiologic Sciences, College of Allied Health, Augusta University, Augusta, GA, USA.
| |
Collapse
|
15
|
Shay C, Lang L, Teng Y. Visualizing and Evaluating Cancer Cell Growth and Invasion by a Novel 3D Culture System. Methods Mol Biol 2020; 2138:167-173. [PMID: 32219746 PMCID: PMC8640924 DOI: 10.1007/978-1-0716-0471-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With the development of new materials and technologies, it is possible to access gene function and drug metabolism using a three-dimensional (3D) cell culture system, which is more suitable for mimicking the in vivo microenvironment of cultured tumor cells ex vivo. SeedEZ is a novel and versatile tool that allows culturing of different types of cells with user convenience and in a desired sequence. This system provides a bridge between traditional 2D culture and animal experiments. Here, we provide two examples demonstrating how to evaluate cancer cell growth by the SeedEZ 3D scaffold and cancer cell invasion by the SeedEZ 3D ring, in order to promote understanding of the necessity of this novel cell culture system.
Collapse
Affiliation(s)
- Chloe Shay
- Department of Pediatrics, Emory Children's Center, Emory University, Atlanta, GA, USA
| | - Liwei Lang
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA.
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
- Department of Medical Laboratory, Imaging and Radiologic Sciences, College of Allied Health, Augusta University, Augusta, GA, USA.
| |
Collapse
|
16
|
Jonsson M, Fjeldbo CS, Holm R, Stokke T, Kristensen GB, Lyng H. Mitochondrial Function of CKS2 Oncoprotein Links Oxidative Phosphorylation with Cell Division in Chemoradioresistant Cervical Cancer. Neoplasia 2019; 21:353-362. [PMID: 30856376 PMCID: PMC6411633 DOI: 10.1016/j.neo.2019.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/03/2022]
Abstract
CDK regulatory subunit 2 (CKS2) has a nuclear function that promotes cell division and is a candidate biomarker of chemoradioresistance in cervical cancer. The underlying mechanisms are, however, not completely understood. We investigated whether CKS2 also has a mitochondrial function that augments tumor aggressiveness. Based on global gene expression data of two cervical cancer cohorts of 150 and 135 patients, we identified a set of genes correlated with CKS2 expression. Gene set enrichment analysis showed enrichment of mitochondrial cellular compartments, and the hallmarks oxidative phosphorylation (OXPHOS) and targets of the MYC oncogene in the gene set. By in situ proximity ligation assay, we showed that CKS2 formed complex with the positively correlated MYC target, mitochondrial single-stranded DNA binding protein SSBP1, in the mitochondrion of cervix tumor samples and HeLa and SiHa cervical cancer cell lines, indicating a role in mitochondrial DNA (mtDNA) replication and thereby OXPHOS. CDK1 was found to be part of the complex. Flow cytometry analyses of HeLa cells showed cell cycle regulation of the CKS2-SSBP1 complex consistent with mtDNA replication activity. Moreover, repression of mtDNA replication and OXPHOS by acute hypoxia decreased CKS2-SSBP1 complex abundance and expression of MYC targets. By immunohistochemistry, cytoplasmic CKS2 expression was found to add to the prognostic impact of nuclear CKS2 expression in patients, suggesting that the mitochondrial function promotes tumor aggressiveness. Our study uncovers a novel link between regulation of cell division by nuclear pathways and OXPHOS in the mitochondrion that involves CKS2 and promotes chemoradioresistance of cervical cancer.
Collapse
Affiliation(s)
- Marte Jonsson
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway
| | | | - Ruth Holm
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Trond Stokke
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway
| | - Gunnar Balle Kristensen
- Department of Gynaecologic Oncology, Oslo University Hospital, Oslo, Norway; Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Heidi Lyng
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
17
|
Ma DY, Wang LL, Lai Q, Peng KJ, Li X, Li ZX, Liu LJ, Luo ZY, Liu SY. Synthesis and antiproliferative activities of novel quartenary ammonium spinosyn derivatives. Bioorg Med Chem Lett 2018; 28:3346-3349. [PMID: 30201293 DOI: 10.1016/j.bmcl.2018.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 08/24/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022]
Abstract
In order to enhance the mitochondria-targeting ability of spinosad. A series of quartenary ammonium spinosyn derivatives was designed and synthesized. Some of the derivatives displayed greatly enhanced antiproliferative ability towards tested human cancer cell lines. The structure activity relationship study indicated that lipophilicity has a great influence on the antiproliferative effects of these derivatives. The most active compound 11d exhibited remarkably enhanced OXPHS inhibition and apoptosis inducing ability than spinosyn A.
Collapse
Affiliation(s)
- Da-You Ma
- School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| | - Long-Long Wang
- School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Qin Lai
- School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Kun-Jian Peng
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Xuan Li
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Zeng-Xia Li
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Li-Jun Liu
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Zhi-Yong Luo
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Su-You Liu
- School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
18
|
Sertorio M, Perentesis JP, Vatner RE, Mascia AE, Zheng Y, Wells SI. Cancer Cell Metabolism: Implications for X-ray and Particle Radiation Therapy. Int J Part Ther 2018; 5:40-48. [PMID: 31773019 DOI: 10.14338/ijpt-18-00023.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/21/2018] [Indexed: 01/13/2023] Open
Abstract
Advances in radiation delivery technologies and immunotherapy have improved effective cancer treatments and long-term outcomes. Experimental and clinical trials have demonstrated the benefit of a combination of radiation therapy and immunotherapy for tumor eradication. Despite precise radiation dose delivery that is achievable by particle therapy and benefits from reactivating the antitumor immune response, resistance to both therapeutic strategies is frequently observed in patients. Understanding the biological origins of such resistance will create new opportunities for improved cancer treatment. Cancer metabolism and especially a high rate of aerobic glycolysis leading to overproduction and release of lactate is one such biological process favoring tumor progression and treatment resistance. Because of their known protumor effects, aerobic glycolysis and lactate production are potential targets for increased efficacy of radiation alone or in combination with immunotherapy. In the following review, we present an overview of the interplay of cancer cell lactate metabolism with the tumor microenvironment and immune cells. We discuss how a deeper understanding and careful modulation of lactate metabolism and radiation therapy might exploit this interplay for improved therapeutic outcome.
Collapse
Affiliation(s)
- Mathieu Sertorio
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - John P Perentesis
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Ralph E Vatner
- Division of Immunobiology, Cincinnati Children's Hospital, OH, USA.,Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH, USA
| | - Anthony E Mascia
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH, USA
| | - Yi Zheng
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Susanne I Wells
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital, Cincinnati, OH, USA
| |
Collapse
|
19
|
De P, Carlson JH, Leyland-Jones B, Williams C, Dey N. Triple Fluorescence staining to Evaluate Mechanism-based Apoptosis following Chemotherapeutic and Targeted Anti-cancer Drugs in Live Tumor Cells. Sci Rep 2018; 8:13192. [PMID: 30181562 PMCID: PMC6123436 DOI: 10.1038/s41598-018-31575-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
We present a protocol for live cancer cell-imaging by triple-fluorescent staining to test 3 crucial mechanisms of apoptosis; the enzymatic activity of executioner caspase3, caspase-dependent phosphatidylserine presentation on the cell surface and mitochondrial function. We standardized a protocol to co-stain live tumor cells with the NucView488-Casp3 substrate, CF594 AnnexinV, and MitoViewBlue. We validated this protocol following apoptosis induction with paclitaxel or in combination with BKM120. Fluorescent imaging of cells using simultaneous live/dead cell markers (CalceinAM green/EthD-1red) was used as internal control. We used quantitative confluence (Essen), AnnexinV-PE staining (Accuri C6), expression of cl-caspase3, Cl-PARP and mitochondrial potential (TMRE-A) as validation criteria in A2780 and OVK18 cells following drug treatment which decreased proliferation, & increased apoptotic signaling with mitochondrial depolarization. Treatment blocked cytoplasmic MitoViewBlue staining while increased both nuclear NucView488-Casp3 substrate and red membranous CF594 AnnexinV staining. Merged images showed 100% mutual exclusivity between MitoViewBlue and caspase3 or AnnexinV stains in control and treated cells as determined by overlap and colocalization coefficients. Caspase3 and AnnexinV staining in treated cells were both separate and overlapped (yellow fluorescence) indicating the sequence of apoptotic-events. The protocol will help in deciphering mechanistic involvement of different stages/features of apoptosis in tumor cell following anti-cancer drugs in real-time.
Collapse
Affiliation(s)
- Pradip De
- Department of Molecular & Experimental Medicine, Avera Research Institute, Sioux Falls, SD, USA.,Department of Internal Medicine, University of South Dakota SSOM, USD, Sioux Falls, SD, USA
| | - Jennifer H Carlson
- Department of Molecular & Experimental Medicine, Avera Research Institute, Sioux Falls, SD, USA
| | - Brian Leyland-Jones
- Department of Molecular & Experimental Medicine, Avera Research Institute, Sioux Falls, SD, USA
| | - Casey Williams
- Department of Molecular & Experimental Medicine, Avera Research Institute, Sioux Falls, SD, USA
| | - Nandini Dey
- Department of Molecular & Experimental Medicine, Avera Research Institute, Sioux Falls, SD, USA. .,Department of Internal Medicine, University of South Dakota SSOM, USD, Sioux Falls, SD, USA.
| |
Collapse
|
20
|
De Francesco EM, Ózsvári B, Sotgia F, Lisanti MP. [Pollution of the environment with lead]. Front Oncol 1984; 9:615. [PMID: 31440463 PMCID: PMC6692486 DOI: 10.3389/fonc.2019.00615] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/21/2019] [Indexed: 12/26/2022] Open
Abstract
Elevated mitochondrial biogenesis and/or metabolism are distinguishing features of cancer cells, as well as Cancer Stem Cells (CSCs), which are involved in tumor initiation, metastatic dissemination, and therapy resistance. In fact, mitochondria-impairing agents can be used to hamper CSCs maintenance and propagation, toward better control of neoplastic disease. Tri-Phenyl-Phosphonium (TPP)-based mitochondrially-targeted compounds are small non-toxic and biologically active molecules that are delivered to and accumulated within the mitochondria of living cells. Therefore, TPP-derivatives may represent potentially “powerful” candidates to block CSCs. Here, we evaluate the metabolic and biological effects induced by the TPP-derivative, termed Dodecyl-TPP (d-TPP) on breast cancer cells. By employing the 3D mammosphere assay in MCF-7 cells, we demonstrate that treatment with d-TPP dose-dependently inhibits the propagation of breast CSCs in suspension. Also, d-TPP targets adherent “bulk” cancer cells, by decreasing MCF-7 cell viability. The analysis of metabolic flux using Seahorse Xfe96 revealed that d-TPP potently inhibits the mitochondrial oxygen consumption rate (OCR), while simultaneously shifting cell metabolism toward glycolysis. Thereafter, we exploited this ATP depletion phenotype and strict metabolic dependency on glycolysis to eradicate the residual glycolytic CSC population, by using additional metabolic stressors. More specifically, we applied a combination strategy based on treatment with d-TPP, in the presence of a selected panel of natural and synthetic compounds, some of which are FDA-approved, that are known to behave as glycolysis (Vitamin C, 2-Deoxy-Glucose) and OXPHOS (Doxycyline, Niclosamide, Berberine) inhibitors. This two-hit scheme effectively decreased CSC propagation, at concentrations of d-TPP toxic only for cancer cells, but not for normal cells, as evidenced using normal human fibroblasts (hTERT-BJ1) as a reference point. Taken together, d-TPP halts CSCs propagation and targets “bulk” cancer cells, without eliciting the relevant undesirable off-target effects in normal cells. These observations pave the way for further exploring the potential of TPP-based derivatives in cancer therapy. Moreover, TPP-based compounds should be investigated for their potential to discriminate between “normal” and “malignant” mitochondria, suggesting that distinct biochemical, and metabolic changes in these organelles could precede specific normal or pathological phenotypes. Lastly, our data validate the manipulation of the energetic machinery as useful tool to eradicate CSCs.
Collapse
|