1
|
Aftab N, Masood F, Ahmad S, Rahim SS, Sanami S, Shaker B, Wei DQ. An optimized deep learning approach for blood-brain barrier permeability prediction with ODE integration. INFORMATICS IN MEDICINE UNLOCKED 2024; 48:101526. [DOI: 10.1016/j.imu.2024.101526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
|
2
|
Mozafari N, Mozafari N, Dehshahri A, Azadi A. Knowledge Gaps in Generating Cell-Based Drug Delivery Systems and a Possible Meeting with Artificial Intelligence. Mol Pharm 2023; 20:3757-3778. [PMID: 37428824 DOI: 10.1021/acs.molpharmaceut.3c00162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Cell-based drug delivery systems are new strategies in targeted delivery in which cells or cell-membrane-derived systems are used as carriers and release their cargo in a controlled manner. Recently, great attention has been directed to cells as carrier systems for treating several diseases. There are various challenges in the development of cell-based drug delivery systems. The prediction of the properties of these platforms is a prerequisite step in their development to reduce undesirable effects. Integrating nanotechnology and artificial intelligence leads to more innovative technologies. Artificial intelligence quickly mines data and makes decisions more quickly and accurately. Machine learning as a subset of the broader artificial intelligence has been used in nanomedicine to design safer nanomaterials. Here, how challenges of developing cell-based drug delivery systems can be solved with potential predictive models of artificial intelligence and machine learning is portrayed. The most famous cell-based drug delivery systems and their challenges are described. Last but not least, artificial intelligence and most of its types used in nanomedicine are highlighted. The present Review has shown the challenges of developing cells or their derivatives as carriers and how they can be used with potential predictive models of artificial intelligence and machine learning.
Collapse
Affiliation(s)
- Negin Mozafari
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
| | - Niloofar Mozafari
- Design and System Operations Department, Regional Information Center for Science and Technology, 71946 94171 Shiraz, Iran
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
- Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
- Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
| |
Collapse
|
3
|
Blood brain barrier-on-a-chip to model neurological diseases. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
4
|
Lowe SR, Kunigelis K, Vogelbaum MA. Leveraging the neurosurgical operating room for therapeutic development in NeuroOncology. Adv Drug Deliv Rev 2022; 186:114337. [PMID: 35561836 DOI: 10.1016/j.addr.2022.114337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 04/22/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022]
Abstract
Glioblastoma (GBM) remains a disease with a dismal prognosis. For all the hope and promise immunotherapies and molecular targeted therapies have shown for systemic malignancies, these treatments have failed to show any promise in GBM. In this context, the paradigm of investigation of therapeutics for this disease itself must be examined and modifications considered. The unique challenge of the presence of blood-brain and blood-tumor barriers (BBB/BTB) raises questions about both the true levels of systemic drug delivery to the affected tissues. Window-of-opportunity (WoO) trials in neuro-oncology allow for proof-of-concept at the start of a classic phase I-II-III clinical trial progression. For therapeutics that do not have the ability to cross the BBB/BTB, direct delivery into tumor and/or tumor-infiltrated brain in the setting of a surgical procedure can provide a novel route of therapeutic access. These approaches permit neurosurgeons to play a greater role in therapeutic development for brain tumors.
Collapse
|
5
|
Ghiaseddin A, Hoang Minh LB, Janiszewska M, Shin D, Wick W, Mitchell DA, Wen PY, Grossman SA. Adult precision medicine: learning from the past to enhance the future. Neurooncol Adv 2021; 3:vdaa145. [PMID: 33543142 PMCID: PMC7846182 DOI: 10.1093/noajnl/vdaa145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite therapeutic advances for other malignancies, gliomas remain challenging solid tumors to treat. Complete surgical resection is nearly impossible due to gliomas’ diffuse infiltrative nature, and treatment is hampered by restricted access to the tumors due to limited transport across the blood–brain barrier. Recent advances in genomic studies and next-generation sequencing techniques have led to a better understanding of gliomas and identification of potential aberrant signaling pathways. Targeting the specific genomic abnormalities via novel molecular therapies has opened a new avenue in the management of gliomas, with encouraging results in preclinical studies and early clinical trials. However, molecular characterization of gliomas revealed significant heterogeneity, which poses a challenge for targeted therapeutic approaches. In this context, leading neuro-oncology researchers and clinicians, industry innovators, and patient advocates convened at the inaugural annual Remission Summit held in Orlando, FL in February 2019 to discuss the latest advances in immunotherapy and precision medicine approaches for the treatment of adult and pediatric brain tumors and outline the unanswered questions, challenges, and opportunities that lay ahead for advancing the duration and quality of life for patients with brain tumors. Here, we provide historical context for precision medicine in other cancers, present emerging approaches for gliomas, discuss their limitations, and outline the steps necessary for future success. We focus on the advances in small molecule targeted therapy, as the use of immunotherapy as an emerging precision medicine modality for glioma treatment has recently been reviewed by our colleagues.
Collapse
Affiliation(s)
- Ashley Ghiaseddin
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Lan B Hoang Minh
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | | | - David Shin
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Wolfgang Wick
- Neurology Clinic, Heidelberg University Medical Center, Heidelberg, Germany
| | - Duane A Mitchell
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Patrick Y Wen
- Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Stuart A Grossman
- Department of Oncology, Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Finch A, Solomou G, Wykes V, Pohl U, Bardella C, Watts C. Advances in Research of Adult Gliomas. Int J Mol Sci 2021; 22:ijms22020924. [PMID: 33477674 PMCID: PMC7831916 DOI: 10.3390/ijms22020924] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 01/03/2023] Open
Abstract
Diffuse gliomas are the most frequent brain tumours, representing 75% of all primary malignant brain tumours in adults. Because of their locally aggressive behaviour and the fact that they cannot be cured by current therapies, they represent one of the most devastating cancers. The present review summarises recent advances in our understanding of glioma development and progression by use of various in vitro and in vivo models, as well as more complex techniques including cultures of 3D organoids and organotypic slices. We discuss the progress that has been made in understanding glioma heterogeneity, alteration in gene expression and DNA methylation, as well as advances in various in silico models. Lastly current treatment options and future clinical trials, which aim to improve early diagnosis and disease monitoring, are also discussed.
Collapse
Affiliation(s)
- Alina Finch
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
| | - Georgios Solomou
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
- School of Medicine, Keele University, Staffordshire ST5 5NL, UK
| | - Victoria Wykes
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
- Department of Neurosurgery, University Hospital Birmingham, Birmingham B15 2WB, UK
| | - Ute Pohl
- Department of Cellular Pathology, University Hospital Birmingham, Birmingham B15 2WB, UK;
| | - Chiara Bardella
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
- Correspondence: (C.B.); (C.W.)
| | - Colin Watts
- Institute of Cancer Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (A.F.); (G.S.); (V.W.)
- Department of Neurosurgery, University Hospital Birmingham, Birmingham B15 2WB, UK
- Correspondence: (C.B.); (C.W.)
| |
Collapse
|
7
|
Van Dinh Q, Liu J, Dutta P. Effect of Calcium ion on synaptotagmin-like protein during pre-fusion of vesicle for exocytosis in blood-brain barrier. Biochem Biophys Rep 2020; 24:100845. [PMID: 33235924 PMCID: PMC7670242 DOI: 10.1016/j.bbrep.2020.100845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/13/2020] [Accepted: 10/27/2020] [Indexed: 11/18/2022] Open
Abstract
Background Calcium signaling and membrane fusion play key roles in exocytosis of drug-containing vesicles through the blood-brain barrier (BBB). Identifying the role of synaptotagmin-like protein4-a (Slp4-a) in the presence of Ca2+ ions, at the pre-fusion stage of a vesicle with the basolateral membrane of endothelial cell, can reveal brain drug transportation across BBB. Methods We utilized molecular dynamics (MD) simulations with a coarse-grained PACE force field to investigate the behaviors of Slp4-a with vesicular and endothelial membranes at the pre-fusion stage of exocytosis since all-atom MD simulation or experiments are more time-consuming and expensive to capture these behaviors. Results The Slp4-a pulls lipid membranes (vesicular and endothelial) into close proximity and disorganizes lipid arrangement at contact points, which are predictors for initiation of fusion. Our MD results also indicate that Slp4-a needs Ca2+ to bind with weakly-charged POPE lipids (phosphatidylethanolamine). Conclusions Slp4-a is an important trigger for membrane fusion in BBB exocytosis. It binds to lipid membranes at multiple binding sites and triggers membrane disruption for fusion in calcium-dependent case. General significance Understanding the prefusion process of the vesicle will help to design better drug delivery mechanisms to the brain through formidable BBB. Role of Ca2+ on Slp4-a is studied for vesicle pre-fusion in EC to initiate exocytosis. Coarse-grained MD is used to study large scale conformation change of Slp-4a. Interaction between C2A domain and lipids is much stronger than that of C2B. Slp4-a can bind to bilayer membrane in Ca2+-bound case to close membrane gap.
Collapse
Affiliation(s)
| | | | - Prashanta Dutta
- Corresponding author. School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
8
|
Mendes M, Basso J, Silva J, Cova T, Sousa J, Pais A, Vitorino C. Biomimeting ultra-small lipid nanoconstructs for glioblastoma treatment: A computationally guided experimental approach. Int J Pharm 2020; 587:119661. [DOI: 10.1016/j.ijpharm.2020.119661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/25/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022]
|
9
|
González J, Pinzón A, Angarita-Rodríguez A, Aristizabal AF, Barreto GE, Martín-Jiménez C. Advances in Astrocyte Computational Models: From Metabolic Reconstructions to Multi-omic Approaches. Front Neuroinform 2020; 14:35. [PMID: 32848690 PMCID: PMC7426703 DOI: 10.3389/fninf.2020.00035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
The growing importance of astrocytes in the field of neuroscience has led to a greater number of computational models devoted to the study of astrocytic functions and their metabolic interactions with neurons. The modeling of these interactions demands a combined understanding of brain physiology and the development of computational frameworks based on genomic-scale reconstructions, system biology, and dynamic models. These computational approaches have helped to highlight the neuroprotective mechanisms triggered by astrocytes and other glial cells, both under normal conditions and during neurodegenerative processes. In the present review, we evaluate some of the most relevant models of astrocyte metabolism, including genome-scale reconstructions and astrocyte-neuron interactions developed in the last few years. Additionally, we discuss novel strategies from the multi-omics perspective and computational models of other glial cell types that will increase our knowledge in brain metabolism and its association with neurodegenerative diseases.
Collapse
Affiliation(s)
- Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia Bogotá, Bogotá, Colombia
| | - Andrea Angarita-Rodríguez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.,Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia Bogotá, Bogotá, Colombia
| | - Andrés Felipe Aristizabal
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - Cynthia Martín-Jiménez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
10
|
Sanai N. Phase 0 Clinical Trial Strategies for the Neurosurgical Oncologist. Neurosurgery 2020; 85:E967-E974. [PMID: 31245813 PMCID: PMC6855937 DOI: 10.1093/neuros/nyz218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 03/08/2019] [Indexed: 12/04/2022] Open
Abstract
In an era of escalating drug discovery costs, shifting priorities within the pharmaceutical industry, and longstanding challenges in central nervous system drug delivery, surgical trials offer an avenue to identify promising agents with demonstrable tumor penetration and molecular effects. The rise of pharmacodynamic- and pharmacokinetic-driven clinical trials, including phase 0 study designs, creates an opportunity for the neurosurgical oncologist to engage drug development for brain tumor patients directly. Here, we review the phase 0 clinical trial mechanism as well as its current and future applications within neurosurgical oncology.
Collapse
Affiliation(s)
- Nader Sanai
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona
| |
Collapse
|
11
|
Bhalerao A, Sivandzade F, Archie SR, Chowdhury EA, Noorani B, Cucullo L. In vitro modeling of the neurovascular unit: advances in the field. Fluids Barriers CNS 2020; 17:22. [PMID: 32178700 PMCID: PMC7077137 DOI: 10.1186/s12987-020-00183-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
The blood–brain barrier (BBB) is a fundamental component of the central nervous system. Its functional and structural integrity is vital in maintaining the homeostasis of the brain microenvironment. On the other hand, the BBB is also a major hindering obstacle for the delivery of effective therapies to treat disorders of the Central Nervous System (CNS). Over time, various model systems have been established to simulate the complexities of the BBB. The development of realistic in vitro BBB models that accurately mimic the physiological characteristics of the brain microcapillaries in situ is of fundamental importance not only in CNS drug discovery but also in translational research. Successful modeling of the Neurovascular Unit (NVU) would provide an invaluable tool that would aid in dissecting out the pathological factors, mechanisms of action, and corresponding targets prodromal to the onset of CNS disorders. The field of BBB in vitro modeling has seen many fundamental changes in the last few years with the introduction of novel tools and methods to improve existing models and enable new ones. The development of CNS organoids, organ-on-chip, spheroids, 3D printed microfluidics, and other innovative technologies have the potential to advance the field of BBB and NVU modeling. Therefore, in this review, summarize the advances and progress in the design and application of functional in vitro BBB platforms with a focus on rapidly advancing technologies.
Collapse
Affiliation(s)
- Aditya Bhalerao
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA
| | - Farzane Sivandzade
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA
| | - Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA
| | - Ekram Ahmed Chowdhury
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA
| | - Behnam Noorani
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA. .,Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| |
Collapse
|
12
|
Saxena D, Sharma A, Siddiqui MH, Kumar R. Blood Brain Barrier Permeability Prediction Using Machine Learning Techniques: An Update. Curr Pharm Biotechnol 2019; 20:1163-1171. [DOI: 10.2174/1389201020666190821145346] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/01/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022]
Abstract
Blood Brain Barrier (BBB) is the collection of vessels of blood with special properties of
permeability that allow a limited range of drug and compounds to pass through it. The BBB plays a vital
role in maintaining balance between intracellular and extracellular environment for brain. Brain Capillary
Endothelial Cells (BECs) act as vehicle for transport and the transport mechanisms across BBB
involve active and passive diffusion of compounds. Efficient prediction models of BBB permeability
can be vital at the preliminary stages of drug development. There have been persistent efforts in identifying
the prediction of BBB permeability of compounds employing multiple machine learning methods
in an attempt to minimize the attrition rate of drug candidates taking up preclinical and clinical trials.
However, there is an urgent need to review the progress of such machine learning derived prediction
models in the prediction of BBB permeability. In the current article, we have analyzed the recently developed
prediction model for BBB permeability using machine learning.
Collapse
Affiliation(s)
- Deeksha Saxena
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow-226028, Uttar Pradesh, India
| | - Anju Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow-226028, Uttar Pradesh, India
| | - Mohammed H. Siddiqui
- Department of Bioengineering, Integral University, Dasauli, P.O. Basha, Kursi Road, Lucknow, Uttar Pradesh, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow-226028, Uttar Pradesh, India
| |
Collapse
|
13
|
Jiang L, Li S, Zheng J, Li Y, Huang H. Recent Progress in Microfluidic Models of the Blood-Brain Barrier. MICROMACHINES 2019; 10:mi10060375. [PMID: 31195652 PMCID: PMC6630552 DOI: 10.3390/mi10060375] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/29/2019] [Accepted: 06/02/2019] [Indexed: 02/07/2023]
Abstract
The blood-brain barrier (BBB) is a critical physical and chemical barrier that maintains brain homeostasis. Researchers in academia and industry are highly motivated to develop experimental models that can accurately mimic the physiological characteristics of the BBB. Microfluidic systems, which manipulate fluids at the micrometer scale, are ideal tools for simulating the BBB microenvironment. In this review, we summarized the progress in the design and evaluation of microfluidic in vitro BBB models, including advances in chip materials, porous membranes, the use of endothelial cells, the importance of shear stress, the detection specific markers to monitor tight junction formation and integrity, measurements of TEER and permeability. We also pointed out several shortcomings of the current microfluidic models. The purpose of this paper is to let the readers understand the characteristics of different types of model design, and select appropriate design parameters according to the research needs, so as to obtain the best experimental results. We believe that the microfluidics BBB models will play an important role in neuroscience and pharmaceutical research.
Collapse
Affiliation(s)
- Lili Jiang
- Department of Clinical and Military Laboratory Medicine, Army Medical University, Chongqing 400038, China.
| | - Shu Li
- Department of Microbiology, Army Medical University, Chongqing 400038, China.
| | - Junsong Zheng
- Department of Clinical and Military Laboratory Medicine, Army Medical University, Chongqing 400038, China.
| | - Yan Li
- Department of Clinical and Military Laboratory Medicine, Army Medical University, Chongqing 400038, China.
| | - Hui Huang
- Department of Clinical and Military Laboratory Medicine, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
14
|
Shityakov S, Förster CY. Computational simulation and modeling of the blood-brain barrier pathology. Histochem Cell Biol 2018; 149:451-459. [PMID: 29721642 DOI: 10.1007/s00418-018-1665-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2018] [Indexed: 10/17/2022]
Abstract
In silico methods and models in the pathology of the blood-brain barrier (BBB) or also called BBB "computational pathology", are based on using mathematical approaches together with complex, high-dimensional experimental data to evaluate and predict disease-related impacts on the CNS. These computational methods and tools have been designed to deal with BBB-linked neuropathology at the molecular, cellular, tissue, and organ levels. The molecular and cellular levels mainly include molecular docking and molecular dynamics simulations (atomistic and coarse-grain) of mutated or misfolded tight junction proteins, receptors, and various BBB transporters. The tissue and organ levels encompass the mechanistic and pharmacokinetic models as well as finite-element method and pathway analyses enriched with multiple sources of raw data (e.g., in vitro and in vivo, histopathological records, "-omics", and imaging data). Overall, this review discusses comprehensive computational techniques and strategies at different levels of complexity, providing new insights and future directions for diagnosis, treatment improvement, and a deeper understanding of BBB-related neuropathological events.
Collapse
Affiliation(s)
- Sergey Shityakov
- Department of Anesthesia and Critical Care, University of Würzburg, 97080, Würzburg, Germany.
| | - Carola Y Förster
- Department of Anesthesia and Critical Care, University of Würzburg, 97080, Würzburg, Germany.
| |
Collapse
|