1
|
Sobol NT, Solernó LM, Beltrán B, Vásquez L, Ripoll GV, Garona J, Alonso DF. Anticancer activity of repurposed hemostatic agent desmopressin on AVPR2-expressing human osteosarcoma. Exp Ther Med 2021; 21:566. [PMID: 33850538 PMCID: PMC8027742 DOI: 10.3892/etm.2021.9998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/03/2020] [Indexed: 01/15/2023] Open
Abstract
Osteosarcoma is the most prevalent primary bone malignancy. Due to its high aggressiveness, novel treatment strategies are urgently required to improve survival of patients with osteosarcoma, especially those with advanced disease. Desmopressin (dDAVP) is a widely used blood-saving agent that has been repurposed as an adjuvant agent for cancer management due to its antiangiogenic and antimetastatic properties. dDAVP acts as a selective agonist of the vasopressin membrane receptor type 2 (AVPR2) present in the microvascular endothelium and in some cancer cells, including breast, lung, colorectal and neuroendocrine tumor cells. Despite the fact that dDAVP has demonstrated its antitumor efficacy in a wide variety of tumor types, exploration of its potential anti-osteosarcoma activity has, to the best of our knowledge, not yet been conducted. Therefore, the aim of the present study was to evaluate the preclinical antitumor activity of dDAVP in osteosarcoma. Human MG-63 and U-2 OS osteosarcoma cell lines were used to assess in vitro and in vivo therapeutic effects of dDAVP. At low micromolar concentrations, dDAVP reduced AVPR2-expressing MG-63 cell growth in a concentration-dependent manner. In contrast, dDAVP exhibited no direct cytostatic effect on AVPR2-negative U-2 OS cells. As it would be expected for canonical AVPR2-activation, dDAVP raised intracellular cAMP levels in osteosarcoma cells, and coincubation with phosphodiesterase-inhibitor rolipram indicated synergistic antiproliferative activity. Cytostatic effects were associated with increased apoptosis, reduced mitotic index and impairment of osteosarcoma cell chemotaxis, as evaluated by TUNEL-labeling, mitotic body count in DAPI-stained cultures and Transwell migration assays. Intravenous administration of dDAVP (12 µg/kg; three times per week) to athymic mice bearing rapidly growing MG-63 xenografts, was indicated to be capable of reducing tumor progression after a 4-week treatment. No major alterations in animal weight, biochemical or hematological parameters were associated with dDAVP treatment, confirming its good tolerability and safety. Finally, AVPR2 expression was detected by immunohistochemistry in 66% of all evaluated chemotherapy-naive human conventional osteosarcoma biopsies. Taking these findings into account, repurposed agent dDAVP may represent an interesting therapeutic tool for the management of osteosarcoma. Further preclinical exploration of dDAVP activity on orthotopic or metastatic osteosarcoma models are required.
Collapse
Affiliation(s)
- Natasha Tatiana Sobol
- Center of Molecular and Translational Oncology, National University of Quilmes, Bernal B1876BXD, Buenos Aires, Argentina
| | - Luisina María Solernó
- Center of Molecular and Translational Oncology, National University of Quilmes, Bernal B1876BXD, Buenos Aires, Argentina
| | - Brady Beltrán
- Precision Medicine Research Center, School of Medicine, University of San Martín de Porres, Lima 15024, Perú
| | - Liliana Vásquez
- Precision Medicine Research Center, School of Medicine, University of San Martín de Porres, Lima 15024, Perú
| | - Giselle Vanina Ripoll
- Center of Molecular and Translational Oncology, National University of Quilmes, Bernal B1876BXD, Buenos Aires, Argentina
- National Council of Scientific and Technical Research (CONICET), Buenos Aires C1425FQB, Argentina
| | - Juan Garona
- Center of Molecular and Translational Oncology, National University of Quilmes, Bernal B1876BXD, Buenos Aires, Argentina
- National Council of Scientific and Technical Research (CONICET), Buenos Aires C1425FQB, Argentina
| | - Daniel Fernando Alonso
- Center of Molecular and Translational Oncology, National University of Quilmes, Bernal B1876BXD, Buenos Aires, Argentina
- National Council of Scientific and Technical Research (CONICET), Buenos Aires C1425FQB, Argentina
| |
Collapse
|
2
|
Garona J, Pifano M, Ripoll G, Alonso DF. Development and therapeutic potential of vasopressin synthetic analog [V 4Q 5]dDAVP as a novel anticancer agent. VITAMINS AND HORMONES 2020; 113:259-289. [PMID: 32138951 DOI: 10.1016/bs.vh.2019.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Since its discovery, arginine vasopressin (AVP) was subjected to several modifications with the aim of obtaining novel derivatives with increased potency and selectivity for biomedical use. Desmopressin (dDAVP) is a first generation synthetic analog of AVP with hemostatic and antimetastatic activity. dDAVP acts as a selective agonist of the arginine vasopressin type 2 receptor (AVPR2) present in microvascular endothelium and cancer cells. Considering its selective effects on AVPR2-expressing malignant and vascular tissue, and interesting antitumor profile, dDAVP was used as a lead compound for the development of novel peptide analogs with enhanced anticancer efficacy. After conducting different structure-activity relationship studies to determine key aminoacidic positions for its antitumor activity against AVPR2-expressing malignant cells, dDAVP was rationally modified and a wide panel of synthetic analogs with different sequence and structural modifications was assessed. As a result of this structure-based drug derivatization novel AVP analog [V4Q5]dDAVP (1-deamino-4-valine-5-glutamine-8-d-arginine vasopressin) was selected as the most active candidate and further developed. [V4Q5]dDAVP was evaluated in highly aggressive and metastatic cancer preclinical models deploying enhanced cytostatic, antimetastatic and angiostatic effects in comparison to parental peptide dDAVP. In addition, novel compound demonstrated good tolerability as evaluated in several toxicological studies, and cooperative therapeutic effects after combination with standard-of-care chemotherapy. In summary, due to its ability to inhibit growth and tumor-associated angiogenesis, as well as impairing progression of metastatic disease, AVP analogs such as novel [V4Q5]dDAVP are promising compounds for further development as coadjuvant agents for the management of advance or recurrent cancers.
Collapse
Affiliation(s)
- Juan Garona
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina.
| | - Marina Pifano
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| | - Giselle Ripoll
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| | - Daniel F Alonso
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| |
Collapse
|
3
|
Mayasich SA, Clarke BL. Vasotocin and the origins of the vasopressin/oxytocin receptor gene family. VITAMINS AND HORMONES 2020; 113:1-27. [DOI: 10.1016/bs.vh.2019.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
5
|
Garona J, Sobol NT, Pifano M, Segatori VI, Gomez DE, Ripoll GV, Alonso DF. Preclinical Efficacy of [V4 Q5 ]dDAVP, a Second Generation Vasopressin Analog, on Metastatic Spread and Tumor-Associated Angiogenesis in Colorectal Cancer. Cancer Res Treat 2018; 51:438-450. [PMID: 29879760 PMCID: PMC6473275 DOI: 10.4143/crt.2018.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/30/2018] [Indexed: 12/29/2022] Open
Abstract
Purpose Control of metastatic spread of colorectal cancer (CRC) remains as a major therapeutic challenge. [V4 Q5 ]dDAVP is a vasopressin peptide analog with previously reported anticancer activity against carcinoma tumors. By acting as a selective agonist of arginine vasopressin type 2 membrane receptor (AVPR2) present in endothelial and tumor cells, [V4Q5]dDAVP is able to impair tumor aggressiveness and distant spread. Our aim was to evaluate the potential therapeutic benefits of [V4Q5]dDAVP on highly aggressive CRC disease using experimental models with translational relevance. Materials and Methods Murine CT-26 and human Colo-205 AVPR2-expressing CRC cell lines were used to test the preclinical efficacy of [V4Q5]dDAVP, both in vitro and in vivo. Results In syngeneic mice surgically implanted with CT-26 cells in the spleen, sustained intravenous treatment with [V4Q5]dDAVP (0.3 µg/kg) dramatically impaired metastatic progression to liver without overt signs of toxicity, and also reduced experimental lung colonization. The compound inhibited in vivo angiogenesis driven by Colo-205 cells in athymic mice, as well as in vitro endothelial cell migration and capillary tube formation. [V4Q5]dDAVP exerted AVPR2-dependent cytostatic activity in vitro (IC50 1.08 µM) and addition to 5-fluorouracil resulted in synergistic antiproliferative effects both in CT-26 and Colo-205 cells. Conclusion The present preclinical study establishes for the first time the efficacy of [V4Q5]dDAVP on CRC. These encouraging results suggest that the novel second generation vasopressin analog could be used for the management of aggressive CRC as an adjuvant agent during surgery or to complement standard chemotherapy, limiting tumor angiogenesis and metastasis and thus protecting the patient from CRC recurrence.
Collapse
Affiliation(s)
- Juan Garona
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| | - Natasha T Sobol
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| | - Marina Pifano
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| | - Valeria I Segatori
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| | - Daniel E Gomez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| | - Giselle V Ripoll
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| | - Daniel F Alonso
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| |
Collapse
|