1
|
Fu L, Zhao L, Liao C, Wang P, Gu Y, Li S, Shi L, Wang Q, Xie J, Zhang L, Liu X, Zhang B. Knockdown of KAT5/KIF11 induces autophagy and promotes apoptosis in anaplastic thyroid cancer cells. Exp Ther Med 2023; 25:247. [PMID: 37153895 PMCID: PMC10160912 DOI: 10.3892/etm.2023.11946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/16/2022] [Indexed: 05/10/2023] Open
Abstract
K (lysine) acetyltransferase (KAT) 5, which is a member of the KAT family of enzymes, has been found to act as a regulatory factor in various types of cancer. However, the role of KAT5 in anaplastic thyroid carcinoma (ATC) and its underlying mechanism is still elusive. The expression levels of KAT5 and kinesin family member 11 (KIF11) in ATC cells were assessed utilizing reverse transcription-quantitative PCR and western blot analyses. The cell proliferative ability was assessed via Cell Counting Kit-8 assay and using 5-ethynyl-2'-deoxyuridine staining. Flow cytometry and western blot analyses were applied for the assessment of cell apoptosis. Cell autophagy was investigated by employing western blot analysis and immunofluorescence staining. In addition, the enrichment of histone H3 lysine 27 acetylation (H3K27ac) and RNA polymerase II (RNA pol II) was analyzed by chromatin immunoprecipitation assay. It was shown that KAT5 expression was markedly increased in ATC cells. KAT5 depletion suppressed the cell proliferative capability but promoted the induction of apoptosis and autophagy. In addition, the autophagy inhibitor 3-methyladenine reversed the effects of KAT5 deficiency on the proliferative and apoptotic activities of 8505C cells. With regard to the mechanism, it was found that KAT5 inhibited the expression of KIF11 by repressing the enrichment of H3K27ac and RNA pol II. Upregulation of KIF11 expression reversed the effects of KAT5 silencing on the proliferative activity, apoptosis and autophagy of 8505C cells. In conclusion, the results indicated that KAT5 induced autophagy and promoted apoptosis of ATC cells by targeting KIF11, which may provide a promising target for the treatment of ATC.
Collapse
Affiliation(s)
- Lei Fu
- Ultrasound Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Lina Zhao
- Ultrasound Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Chunyan Liao
- Ultrasound Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Pengzhen Wang
- Ultrasound Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Ying Gu
- Ultrasound Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Sha Li
- Ultrasound Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Liying Shi
- Ultrasound Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Qiaorong Wang
- Department of Medicine, University Town Hospital, Guizhou Medical University, Huaxi University Town, Guiyang, Guizhou 550025, P.R. China
| | - Jin Xie
- Ultrasound Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Lixin Zhang
- Ultrasound Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Xiaoming Liu
- Ultrasound Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Bei Zhang
- Ultrasound Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Correspondence to: Dr Bei Zhang, Ultrasound Center, Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Yunyan, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
2
|
Fiorentino F, Sementilli S, Menna M, Turrisi F, Tomassi S, Pellegrini FR, Iuzzolino A, D'Acunzo F, Feoli A, Wapenaar H, Taraglio S, Fraschetti C, Del Bufalo D, Sbardella G, Dekker FJ, Paiardini A, Trisciuoglio D, Mai A, Rotili D. First-in-Class Selective Inhibitors of the Lysine Acetyltransferase KAT8. J Med Chem 2023; 66:6591-6616. [PMID: 37155735 DOI: 10.1021/acs.jmedchem.2c01937] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
KAT8 is a lysine acetyltransferase primarily catalyzing the acetylation of Lys16 of histone H4 (H4K16). KAT8 dysregulation is linked to the development and metastatization of many cancer types, including non-small cell lung cancer (NSCLC) and acute myeloid leukemia (AML). Few KAT8 inhibitors have been reported so far, none of which displaying selective activity. Based on the KAT3B/KDAC inhibitor C646, we developed a series of N-phenyl-5-pyrazolone derivatives and identified compounds 19 and 34 as low-micromolar KAT8 inhibitors selective over a panel of KATs and KDACs. Western blot, immunofluorescence, and CETSA experiments demonstrated that both inhibitors selectively target KAT8 in cells. Moreover, 19 and 34 exhibited mid-micromolar antiproliferative activity in different cancer cell lines, including NSCLC and AML, without impacting the viability of nontransformed cells. Overall, these compounds are valuable tools for elucidating KAT8 biology, and their simple structures make them promising candidates for future optimization studies.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy
| | - Sara Sementilli
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Via degli Apuli 4, Rome 00185, Italy
| | - Martina Menna
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy
| | - Federica Turrisi
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Via degli Apuli 4, Rome 00185, Italy
| | - Stefano Tomassi
- Department of Pharmacy, University of Naples "Federico II", via Domenico Montesano 49, Naples 80131, Italy
| | - Francesca Romana Pellegrini
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Via degli Apuli 4, Rome 00185, Italy
| | - Angela Iuzzolino
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Via degli Apuli 4, Rome 00185, Italy
| | - Francesca D'Acunzo
- Institute of Biological Systems (ISB), Italian National Research Council (CNR), Sezione Meccanismi di Reazione, c/o Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, Rome 00185, Italy
| | - Alessandra Feoli
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, Fisciano (SA) 84084, Italy
| | - Hannah Wapenaar
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Sophie Taraglio
- Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy
| | - Caterina Fraschetti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS-Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Gianluca Sbardella
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, Fisciano (SA) 84084, Italy
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Alessandro Paiardini
- Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy
| | - Daniela Trisciuoglio
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Via degli Apuli 4, Rome 00185, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy
- Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy
| |
Collapse
|
3
|
Fabbrizi E, Fiorentino F, Carafa V, Altucci L, Mai A, Rotili D. Emerging Roles of SIRT5 in Metabolism, Cancer, and SARS-CoV-2 Infection. Cells 2023; 12:cells12060852. [PMID: 36980194 PMCID: PMC10047932 DOI: 10.3390/cells12060852] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Sirtuin 5 (SIRT5) is a predominantly mitochondrial enzyme catalyzing the removal of glutaryl, succinyl, malonyl, and acetyl groups from lysine residues through a NAD+-dependent deacylase mechanism. SIRT5 is an important regulator of cellular homeostasis and modulates the activity of proteins involved in different metabolic pathways such as glycolysis, tricarboxylic acid (TCA) cycle, fatty acid oxidation, electron transport chain, generation of ketone bodies, nitrogenous waste management, and reactive oxygen species (ROS) detoxification. SIRT5 controls a wide range of aspects of myocardial energy metabolism and plays critical roles in heart physiology and stress responses. Moreover, SIRT5 has a protective function in the context of neurodegenerative diseases, while it acts as a context-dependent tumor promoter or suppressor. In addition, current research has demonstrated that SIRT5 is implicated in the SARS-CoV-2 infection, although opposing conclusions have been drawn in different studies. Here, we review the current knowledge on SIRT5 molecular actions under both healthy and diseased settings, as well as its functional effects on metabolic targets. Finally, we revise the potential of SIRT5 as a therapeutic target and provide an overview of the currently reported SIRT5 modulators, which include both activators and inhibitors.
Collapse
Affiliation(s)
- Emanuele Fabbrizi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Vincenzo Carafa
- Department of Precision Medicine, Università degli Studi della Campania “L. Vanvitelli”, 80138 Naples, Italy
- BIOGEM, 83031 Ariano Irpino, Italy
| | - Lucia Altucci
- Department of Precision Medicine, Università degli Studi della Campania “L. Vanvitelli”, 80138 Naples, Italy
- BIOGEM, 83031 Ariano Irpino, Italy
- IEOS—Istituto per l’Endocrinologia e Oncologia Sperimentale, CNR, 80131 Naples, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
- Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (A.M.); (D.R.); Tel.: +39-0649913392 (A.M.); +39-0649913237 (D.R.); Fax: +39-0649693268 (A.M.)
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (A.M.); (D.R.); Tel.: +39-0649913392 (A.M.); +39-0649913237 (D.R.); Fax: +39-0649693268 (A.M.)
| |
Collapse
|
4
|
Fiorentino F, Rotili D, Mai A. Native mass spectrometry-directed drug discovery: Recent advances in investigating protein function and modulation. Drug Discov Today 2023; 28:103548. [PMID: 36871843 DOI: 10.1016/j.drudis.2023.103548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/15/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Native mass spectrometry (nMS) is a biophysical method for studying protein complexes and can provide insights into subunit stoichiometry and composition, protein-ligand, and protein-protein interactions (PPIs). These analyses are made possible by preserving non-covalent interactions in the gas phase, thereby allowing the analysis of proteins in their native state. Consequently, nMS has been increasingly applied in early drug discovery campaigns for the characterization of protein-drug interactions and the evaluation of PPI modulators. Here, we discuss recent developments in nMS-directed drug discovery and provide a timely perspective on the possible applications of this technology in drug discovery.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
5
|
Kanada R, Kagoshima Y, Suzuki T, Nakamura A, Funami H, Watanabe J, Asano M, Takahashi M, Ubukata O, Suzuki K, Aikawa T, Sato K, Goto M, Setsu G, Ito K, Kihara K, Kuroha M, Kohno T, Ogiwara H, Isoyama T, Tominaga Y, Higuchi S, Naito H. Discovery of DS-9300: A Highly Potent, Selective, and Once-Daily Oral EP300/CBP Histone Acetyltransferase Inhibitor. J Med Chem 2023; 66:695-715. [PMID: 36572866 DOI: 10.1021/acs.jmedchem.2c01641] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Histone acetylation is a post-translational modification of histones that is catalyzed by histone acetyltransferases (HATs) and plays an essential role in cellular processes. The HAT domain of EP300/CBP has recently emerged as a potential drug target for cancer therapy. Here, we describe the identification of the novel, highly potent, and selective EP300/CBP HAT inhibitor DS-9300. Our optimization efforts using a structure-based drug design approach based on the cocrystal structures of the EP300 HAT domain in complex with compounds 2 and 3 led to the identification of compounds possessing low-nanomolar EP300 HAT inhibitory potency and the ability to inhibit cellular acetylation of histone H3K27. Optimization of the pharmacokinetic properties in this series resulted in compounds with excellent oral systemic exposure, and once-daily oral administration of 16 (DS-9300) demonstrated potent antitumor effects in a castrated VCaP xenograft mouse model without significant body weight loss.
Collapse
Affiliation(s)
- Ryutaro Kanada
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo140-8710, Japan
| | - Yoshiko Kagoshima
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo140-8710, Japan
| | - Takashi Suzuki
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo140-8710, Japan
| | - Akifumi Nakamura
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo140-8710, Japan
| | - Hideaki Funami
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo140-8710, Japan
| | - Jun Watanabe
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo140-8710, Japan
| | - Masayoshi Asano
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo140-8710, Japan
| | - Mizuki Takahashi
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo134-8630, Japan
| | - Osamu Ubukata
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo134-8630, Japan
| | - Kanae Suzuki
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo140-8710, Japan
| | - Tomoya Aikawa
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo140-8710, Japan
| | - Kazumi Sato
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo134-8630, Japan
| | - Megumi Goto
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo140-8710, Japan
| | - Genzui Setsu
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo140-8710, Japan
| | - Kentaro Ito
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo140-8710, Japan
| | - Kawori Kihara
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo134-8630, Japan
| | - Mutsumi Kuroha
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo134-8630, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, 1-1 Tsukiji 5-chome, Chuo-ku, Tokyo104-0045, Japan
| | - Hideaki Ogiwara
- Division of Cancer Therapeutics, National Cancer Center Research Institute, 1-1 Tsukiji 5-chome, Chuo-ku, Tokyo104-0045, Japan
| | - Takeshi Isoyama
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo140-8710, Japan
| | - Yuichi Tominaga
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo140-8710, Japan
| | - Saito Higuchi
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo140-8710, Japan
| | - Hiroyuki Naito
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo140-8710, Japan
| |
Collapse
|
6
|
Ghasemi A, Farazmand A, Hassanzadeh V, Poursani S, Soltani S, Akhtari M, Akhlaghi M, Farhadi E, Jamshidi A, Mahmoudi M. Upregulation of KAT2B and ESCO2 gene expression level in patients with rheumatoid arthritis. Clin Rheumatol 2023; 42:253-259. [PMID: 36104638 DOI: 10.1007/s10067-022-06351-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/31/2022] [Accepted: 08/20/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune condition that causes progressive inflammation. It seems that alternations in epigenetic modifications contribute to RA development. The present study aimed to assess the expression pattern of K (lysine) acetyltransferase 1 (KAT1; HAT1) and lysine acetyltransferase 2B (KAT2B; PCAF), and the establishment of sister chromatid cohesion N-acetyltransferase 2 (ESCO2) in peripheral blood mononuclear cells (PBMCs) from RA patients. METHOD AND MATERIAL In this case-control study, we studied 50 cases with RA in comparison to 50 age- and gender-matched healthy subjects. Separation of PBMCs samples from whole blood, extraction of RNA, and reverse transcription were performed. Gene transcript levels of KAT1, KAT2B, and ESCO2 were determined using SYBR green real-time quantitative PCR. RESULTS Our results exhibited a significant upregulation in the expression levels of ESCO2 and KAT2B genes in patients with RA compared to normal individuals (P-value < 0.0001). Similarly, we observed higher expression of KAT1 in the patients' group when compared to the healthy controls, although the difference in expression level failed to show any significant changes (P-value = 0.485). Also, we found a positive correlation between ESCO2 and the level of erythrocyte sedimentation rate (ESR) in patients. CONCLUSION Collectively, our results suggest that upregulated expression of KAT2B and ESCO2 genes may be correlated to RA development. Further studies with larger sample sizes are required for understanding the potential contribution of these enzymes in the pathology of RA. Key Points • Dysregulated expression level of epigenetics enzymes was observed in PBMCs from RA patients. • The expression of KAT2B was 2.44 times higher in the PBMCs of RA patients than in the healthy subjects. • The expression of ESCO2 was upregulated (2.75 times) in the PBMCs of RA patients compared to the control group. • There was a positive correlation between ESCO2 expression and the ESR level in patients.
Collapse
Affiliation(s)
- Alaleh Ghasemi
- Department of Cell & Molecular Biology, School of Biology, College of Science, University of Tehran, P. O. Box 141556455, Tehran, Iran
| | - Ali Farazmand
- Department of Cell & Molecular Biology, School of Biology, College of Science, University of Tehran, P. O. Box 141556455, Tehran, Iran.
| | - Vahideh Hassanzadeh
- Department of Cell & Molecular Biology, School of Biology, College of Science, University of Tehran, P. O. Box 141556455, Tehran, Iran
| | - Shiva Poursani
- Rheumatology Research Center, Tehran University of Medical Sciences, Shariati Hospital, Kargar Ave, Tehran, Iran
| | - Samaneh Soltani
- Rheumatology Research Center, Tehran University of Medical Sciences, Shariati Hospital, Kargar Ave, Tehran, Iran
| | - Maryam Akhtari
- Rheumatology Research Center, Tehran University of Medical Sciences, Shariati Hospital, Kargar Ave, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maassoumeh Akhlaghi
- Rheumatology Research Center, Tehran University of Medical Sciences, Shariati Hospital, Kargar Ave, Tehran, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Shariati Hospital, Kargar Ave, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Shariati Hospital, Kargar Ave, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Shariati Hospital, Kargar Ave, Tehran, Iran. .,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Feng J, Meng X. Histone modification and histone modification-targeted anti-cancer drugs in breast cancer: Fundamentals and beyond. Front Pharmacol 2022; 13:946811. [PMID: 36188615 PMCID: PMC9522521 DOI: 10.3389/fphar.2022.946811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/15/2022] [Indexed: 12/21/2022] Open
Abstract
Dysregulated epigenetic enzymes and resultant abnormal epigenetic modifications (EMs) have been suggested to be closely related to tumor occurrence and progression. Histone modifications (HMs) can assist in maintaining genome stability, DNA repair, transcription, and chromatin modulation within breast cancer (BC) cells. In addition, HMs are reversible, dynamic processes involving the associations of different enzymes with molecular compounds. Abnormal HMs (e.g. histone methylation and histone acetylation) have been identified to be tightly related to BC occurrence and development, even though their underlying mechanisms remain largely unclear. EMs are reversible, and as a result, epigenetic enzymes have aroused wide attention as anti-tumor therapeutic targets. At present, treatments to restore aberrant EMs within BC cells have entered preclinical or clinical trials. In addition, no existing studies have comprehensively analyzed aberrant HMs within BC cells; in addition, HM-targeting BC treatments remain to be further investigated. Histone and non-histone protein methylation is becoming an attractive anti-tumor epigenetic therapeutic target; such methylation-related enzyme inhibitors are under development at present. Consequently, the present work focuses on summarizing relevant studies on HMs related to BC and the possible mechanisms associated with abnormal HMs. Additionally, we also aim to analyze existing therapeutic agents together with those drugs approved and tested through pre-clinical and clinical trials, to assess their roles in HMs. Moreover, epi-drugs that target HMT inhibitors and HDAC inhibitors should be tested in preclinical and clinical studies for the treatment of BC. Epi-drugs that target histone methylation (HMT inhibitors) and histone acetylation (HDAC inhibitors) have now entered clinical trials or are approved by the US Food and Drug Administration (FDA). Therefore, the review covers the difficulties in applying HM-targeting treatments in clinics and proposes feasible approaches for overcoming such difficulties and promoting their use in treating BC cases.
Collapse
|
8
|
Fiorentino F, Castiello C, Mai A, Rotili D. Therapeutic Potential and Activity Modulation of the Protein Lysine Deacylase Sirtuin 5. J Med Chem 2022; 65:9580-9606. [PMID: 35802779 PMCID: PMC9340778 DOI: 10.1021/acs.jmedchem.2c00687] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sirtiun 5 (SIRT5) is a NAD+-dependent protein lysine deacylase primarily located in mitochondria. SIRT5 displays an affinity for negatively charged acyl groups and mainly catalyzes lysine deglutarylation, desuccinylation, and demalonylation while possessing weak deacetylase activity. SIRT5 substrates play crucial roles in metabolism and reactive oxygen species (ROS) detoxification, and SIRT5 activity is protective in neuronal and cardiac physiology. Moreover, SIRT5 exhibits a dichotomous role in cancer, acting as context-dependent tumor promoter or suppressor. Given its multifaceted activity, SIRT5 is a promising target in the design of activators or inhibitors that might act as therapeutics in many pathologies, including cancer, cardiovascular disorders, and neurodegeneration. To date, few cellular-active peptide-based SIRT5 inhibitors (SIRT5i) have been described, and potent and selective small-molecule SIRT5i have yet to be discovered. In this perspective, we provide an outline of SIRT5's roles in different biological settings and describe SIRT5 modulators in terms of their mode of action, pharmacological activity, and structure-activity relationships.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzala Aldo Moro 5, Rome 00185, Italy
| | - Carola Castiello
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzala Aldo Moro 5, Rome 00185, Italy
| | - Antonello Mai
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzala Aldo Moro 5, Rome 00185, Italy
- Pasteur
Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Piazzala Aldo Moro 5, Rome 00185, Italy
| | - Dante Rotili
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzala Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
9
|
Nowak R, Tumber A, Hendrix E, Ansari MS, Sabatino M, Antonini L, Andrijes R, Salah E, Mautone N, Pellegrini FR, Simelis K, Kawamura A, Johansson C, Passeri D, Pellicciari R, Ciogli A, Del Bufalo D, Ragno R, Coleman ML, Trisciuoglio D, Mai A, Oppermann U, Schofield CJ, Rotili D. First-in-Class Inhibitors of the Ribosomal Oxygenase MINA53. J Med Chem 2021; 64:17031-17050. [PMID: 34843649 PMCID: PMC8667043 DOI: 10.1021/acs.jmedchem.1c00605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Indexed: 01/05/2023]
Abstract
MINA53 is a JmjC domain 2-oxoglutarate-dependent oxygenase that catalyzes ribosomal hydroxylation and is a target of the oncogenic transcription factor c-MYC. Despite its anticancer target potential, no small-molecule MINA53 inhibitors are reported. Using ribosomal substrate fragments, we developed mass spectrometry assays for MINA53 and the related oxygenase NO66. These assays enabled the identification of 2-(aryl)alkylthio-3,4-dihydro-4-oxoypyrimidine-5-carboxylic acids as potent MINA53 inhibitors, with selectivity over NO66 and other JmjC oxygenases. Crystallographic studies with the JmjC demethylase KDM5B revealed active site binding but without direct metal chelation; however, molecular modeling investigations indicated that the inhibitors bind to MINA53 by directly interacting with the iron cofactor. The MINA53 inhibitors manifest evidence for target engagement and selectivity for MINA53 over KDM4-6. The MINA53 inhibitors show antiproliferative activity with solid cancer lines and sensitize cancer cells to conventional chemotherapy, suggesting that further work investigating their potential in combination therapies is warranted.
Collapse
Affiliation(s)
- Radosław
P. Nowak
- Botnar
Research Centre, Nuffield Orthopaedic Centre, University of Oxford, Headington OX3 7LD, U.K.
| | - Anthony Tumber
- Botnar
Research Centre, Nuffield Orthopaedic Centre, University of Oxford, Headington OX3 7LD, U.K.
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, 12, Mansfield Road, University of Oxford, Oxford OX1 3TA, U.K.
| | - Eline Hendrix
- Institute
of Cancer and Genomic Sciences, University
of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Mohammad Salik
Zeya Ansari
- Institute
of Molecular Biology and Pathology (IMBP), National Research Council
(CNR) c/o Department of Biology and Biotechnology “Charles
Darwin” Sapienza University of Rome, Via degli Apuli 4, Rome 00185, Italy
| | - Manuela Sabatino
- Rome
Center for Molecular Design, Department of Chemistry and Technology
of Drugs, ″Sapienza″ University
of Rome, Piazzale Aldo
Moro 5, Rome 00185, Italy
| | - Lorenzo Antonini
- Rome
Center for Molecular Design, Department of Chemistry and Technology
of Drugs, ″Sapienza″ University
of Rome, Piazzale Aldo
Moro 5, Rome 00185, Italy
| | - Regina Andrijes
- Institute
of Cancer and Genomic Sciences, University
of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Eidarus Salah
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, 12, Mansfield Road, University of Oxford, Oxford OX1 3TA, U.K.
| | - Nicola Mautone
- Department
of Chemistry and Technology of Drugs, ″Sapienza″
University of Rome, Piazzale
Aldo Moro 5, Rome 00185, Italy
| | - Francesca Romana Pellegrini
- Institute
of Molecular Biology and Pathology (IMBP), National Research Council
(CNR) c/o Department of Biology and Biotechnology “Charles
Darwin” Sapienza University of Rome, Via degli Apuli 4, Rome 00185, Italy
| | - Klemensas Simelis
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, 12, Mansfield Road, University of Oxford, Oxford OX1 3TA, U.K.
| | - Akane Kawamura
- Chemistry
- School of Natural and Environmental Sciences, Newcastle University, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Catrine Johansson
- Botnar
Research Centre, Nuffield Orthopaedic Centre, University of Oxford, Headington OX3 7LD, U.K.
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, 12, Mansfield Road, University of Oxford, Oxford OX1 3TA, U.K.
| | - Daniela Passeri
- TES
Pharma S.r.l. Via P. Togliatti 20, Corciano, Perugia 06073, Italy
| | | | - Alessia Ciogli
- Department
of Chemistry and Technology of Drugs, ″Sapienza″
University of Rome, Piazzale
Aldo Moro 5, Rome 00185, Italy
| | - Donatella Del Bufalo
- Preclinical
Models and New Therapeutic Agents Unit, IRCCS-Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Rino Ragno
- Rome
Center for Molecular Design, Department of Chemistry and Technology
of Drugs, ″Sapienza″ University
of Rome, Piazzale Aldo
Moro 5, Rome 00185, Italy
| | - Mathew L. Coleman
- Institute
of Cancer and Genomic Sciences, University
of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Daniela Trisciuoglio
- Institute
of Molecular Biology and Pathology (IMBP), National Research Council
(CNR) c/o Department of Biology and Biotechnology “Charles
Darwin” Sapienza University of Rome, Via degli Apuli 4, Rome 00185, Italy
| | - Antonello Mai
- Department
of Chemistry and Technology of Drugs, ″Sapienza″
University of Rome, Piazzale
Aldo Moro 5, Rome 00185, Italy
| | - Udo Oppermann
- Botnar
Research Centre, Nuffield Orthopaedic Centre, University of Oxford, Headington OX3 7LD, U.K.
| | - Christopher J. Schofield
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, 12, Mansfield Road, University of Oxford, Oxford OX1 3TA, U.K.
| | - Dante Rotili
- Department
of Chemistry and Technology of Drugs, ″Sapienza″
University of Rome, Piazzale
Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
10
|
Abstract
![]()
Sirtuin 6 (SIRT6)
is an NAD+-dependent protein deacylase
and mono-ADP-ribosyltransferase of the sirtuin family with a wide
substrate specificity. In vitro and in vivo studies have indicated that SIRT6 overexpression or activation has
beneficial effects for cellular processes such as DNA repair, metabolic
regulation, and aging. On the other hand, SIRT6 has contrasting roles
in cancer, acting either as a tumor suppressor or promoter in a context-specific
manner. Given its central role in cellular homeostasis, SIRT6 has
emerged as a promising target for the development of small-molecule
activators and inhibitors possessing a therapeutic potential in diseases
ranging from cancer to age-related disorders. Moreover, specific modulators
allow the molecular details of SIRT6 activity to be scrutinized and
further validate the enzyme as a pharmacological target. In this Perspective,
we summarize the current knowledge about SIRT6 pharmacology and medicinal
chemistry and describe the features of the activators and inhibitors
identified so far.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Antonello Mai
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, P.le A Moro 5, 00185 Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, P.le A Moro 5, 00185 Rome, Italy
| |
Collapse
|
11
|
Garcinol-A Natural Histone Acetyltransferase Inhibitor and New Anti-Cancer Epigenetic Drug. Int J Mol Sci 2021; 22:ijms22062828. [PMID: 33799504 PMCID: PMC8001519 DOI: 10.3390/ijms22062828] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/11/2022] Open
Abstract
Garcinol extracted from Garcinia indica fruit peel and leaves is a polyisoprenylated benzophenone. In traditional medicine it was used for its antioxidant and anti-inflammatory properties. Several studies have shown anti-cancer properties of garcinol in cancer cell lines and experimental animal models. Garcinol action in cancer cells is based on its antioxidant and anti-inflammatory properties, but also on its potency to inhibit histone acetyltransferases (HATs). Recent studies indicate that garcinol may also deregulate expression of miRNAs involved in tumour development and progression. This paper focuses on the latest research concerning garcinol as a HAT inhibitor and miRNA deregulator in the development and progression of various cancers. Garcinol may be considered as a candidate for next generation epigenetic drugs, but further studies are needed to establish the precise toxicity, dosages, routes of administration, and safety for patients.
Collapse
|
12
|
Proietti G, Wang Y, Punzo C, Mecinović J. Substrate Scope for Human Histone Lysine Acetyltransferase KAT8. Int J Mol Sci 2021; 22:ijms22020846. [PMID: 33467728 PMCID: PMC7830570 DOI: 10.3390/ijms22020846] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/16/2022] Open
Abstract
Biomedically important histone lysine acetyltransferase KAT8 catalyses the acetyl coenzyme A-dependent acetylation of lysine on histone and other proteins. Here, we explore the ability of human KAT8 to catalyse the acetylation of histone H4 peptides possessing lysine and its analogues at position 16 (H4K16). Our synthetic and enzymatic studies on chemically and structurally diverse lysine mimics demonstrate that KAT8 also has a capacity to acetylate selected lysine analogues that possess subtle changes on the side chain and main chain. Overall, this work highlights that KAT8 has a broader substrate scope beyond natural lysine, and contributes to the design of new chemical probes targeting KAT8 and other members of the histone lysine acetyltransferase (KAT) family.
Collapse
Affiliation(s)
- Giordano Proietti
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (G.P.); (C.P.)
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands;
| | - Yali Wang
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands;
- Department of Blood Transfusion, Jilin University, 126 Xiantai Street, Changchun 130033, China
| | - Chiara Punzo
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (G.P.); (C.P.)
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (G.P.); (C.P.)
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands;
- Correspondence:
| |
Collapse
|
13
|
Tomaselli D, Mautone N, Mai A, Rotili D. Recent advances in epigenetic proteolysis targeting chimeras (Epi-PROTACs). Eur J Med Chem 2020; 207:112750. [DOI: 10.1016/j.ejmech.2020.112750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 01/03/2023]
|
14
|
Shanmugam MK, Dharmarajan A, Warrier S, Bishayee A, Kumar AP, Sethi G, Ahn KS. Role of histone acetyltransferase inhibitors in cancer therapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 125:149-191. [PMID: 33931138 DOI: 10.1016/bs.apcsb.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of cancer is a complex phenomenon driven by various extrinsic as well as intrinsic risk factors including epigenetic modifications. These post-translational modifications are encountered in diverse cancer cells and appear for a relatively short span of time. These changes can significantly affect various oncogenic genes and proteins involved in cancer initiation and progression. Histone lysine acetylation and deacetylation processes are controlled by two opposing classes of enzymes that modulate gene regulation either by adding an acetyl moiety on a histone lysine residue by histone lysine acetyltransferases (KATs) or via removing it by histone deacetylases (KDACs). Deregulated KAT activity has been implicated in the development of several diseases including cancer and can be targeted for the development of anti-neoplastic drugs. Here, we describe the predominant epigenetic changes that can affect key KAT superfamily members during carcinogenesis and briefly highlight the pharmacological potential of employing lysine acetyltransferase inhibitors (KATi) for cancer therapy.
Collapse
Affiliation(s)
- Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Arunasalam Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education & Research, Chennai, India
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal University, Bangalore, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Fiorentino F, Mai A, Rotili D. Lysine Acetyltransferase Inhibitors From Natural Sources. Front Pharmacol 2020; 11:1243. [PMID: 32903408 PMCID: PMC7434864 DOI: 10.3389/fphar.2020.01243] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/29/2020] [Indexed: 12/22/2022] Open
Abstract
Acetylation of histone and non-histone protein lysine residues has been widely described as a critical modulator of several cell functions in humans. Lysine acetyltransferases (KATs) catalyse the transfer of acetyl groups on substrate proteins and are involved in multiple physiological processes such as cell signalling, metabolism, gene regulation, and apoptosis. Given the pivotal role of acetylation, the alteration of KATs enzymatic activity has been clearly linked to various cellular dysfunctions leading to several inflammatory, metabolic, neurological, and cancer diseases. Hence, the use KAT inhibitors (KATi) has been suggested as a potentially successful strategy to reverse or prevent these conditions. To date, only a few KATi have proven to be potential drug candidates, and there is still a keen interest in designing molecules showing drug-like properties from both pharmacodynamics and pharmacokinetics point of view. Increasing literature evidence has been highlighting natural compounds as a wide source of molecular scaffolds for developing therapeutic agents, including KATi. In fact, several polyphenols, catechins, quinones, and peptides obtained from natural sources (including nuts, oils, root extracts, and fungi metabolites) have been described as promising KATi. Here we summarize the features of this class of compounds, describing their modes of action, structure-activity relationships and (semi)-synthetic derivatives, with the aim of assisting the development of novel more potent, isoform selective and drug-like KATi.
Collapse
Affiliation(s)
| | - Antonello Mai
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy
| | - Dante Rotili
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
16
|
Proietti G, Wang Y, Rainone G, Mecinović J. Effect of lysine side chain length on histone lysine acetyltransferase catalysis. Sci Rep 2020; 10:13046. [PMID: 32747680 PMCID: PMC7400623 DOI: 10.1038/s41598-020-69510-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Histone lysine acetyltransferase (KAT)-catalyzed acetylation of lysine residues in histone tails plays a key role in regulating gene expression in eukaryotes. Here, we examined the role of lysine side chain length in the catalytic activity of human KATs by incorporating shorter and longer lysine analogs into synthetic histone H3 and H4 peptides. The enzymatic activity of MOF, PCAF and GCN5 acetyltransferases towards histone peptides bearing lysine analogs was evaluated using MALDI-TOF MS assays. Our results demonstrate that human KAT enzymes have an ability to catalyze an efficient acetylation of longer lysine analogs, whereas shorter lysine analogs are not substrates for KATs. Kinetics analyses showed that lysine is a superior KAT substrate to its analogs with altered chain length, implying that lysine has an optimal chain length for KAT-catalyzed acetylation reaction.
Collapse
Affiliation(s)
- Giordano Proietti
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark.,Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Yali Wang
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.,Department of Blood Transfusion, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun, 130033, People's Republic of China
| | - Giorgio Rainone
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark. .,Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
17
|
Targeting histone acetylation/deacetylation in parasites: an update (2017–2020). Curr Opin Chem Biol 2020; 57:65-74. [DOI: 10.1016/j.cbpa.2020.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022]
|
18
|
Gao X, Bao H, Liu L, Zhu W, Zhang L, Yue L. Systematic analysis of lysine acetylome and succinylome reveals the correlation between modification of H2A.X complexes and DNA damage response in breast cancer. Oncol Rep 2020; 43:1819-1830. [PMID: 32236595 PMCID: PMC7160542 DOI: 10.3892/or.2020.7554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/21/2020] [Indexed: 02/06/2023] Open
Abstract
Abnormal protein acetylation and succinylation in lysine residues can cause the initiation and development of numerous different types of tumors. However, to the best of our knowledge, there is currently a lack of systematic investigation in breast cancer. Using proteomic techniques, the present study systematically investigated the two modifications of all proteins in invasive ductal carcinoma tissues to identify potential targets. The results revealed significantly higher modification levels for the majority of proteins in breast cancer tissue when compared with para‑carcinomous normal tissue. The bioinformatic analysis demonstrated that either highly acetylated or succinylated proteins were significantly enriched in histone H2A.X (H2A.X) complexes and nucleophosmin (NPM1) may be the key member among them. The results of further analyses revealed that H2A.X complexes were associated with DNA damage response (DDR), and the proteomic results for protein quantification provided further evidence for the abnormal DDR condition in breast cancer tissues. Later, the western blotting results validated the high acetylation and succinylation levels of the majority of proteins, including the modification of NPM1 and its correlation with cell viability. Finally, the upregulation of H2A.X in breast cancer tissues further demonstrated the association between H2A.X complex modification and DDR in breast cancer. Overall, the present study systematically investigated the protein acetylation and succinylation in breast cancer and provided evidence to support H2A.X complexes as potential targets. These results broaden the horizon for breast cancer investigation and link it with epigenetics.
Collapse
Affiliation(s)
- Xiuli Gao
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Hongguang Bao
- Oncology Surgical Department, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Likun Liu
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Wenbin Zhu
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Liping Zhang
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Liling Yue
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
19
|
Zhang B, Chen D, Liu B, Dekker FJ, Quax WJ. A novel histone acetyltransferase inhibitor A485 improves sensitivity of non-small-cell lung carcinoma cells to TRAIL. Biochem Pharmacol 2020; 175:113914. [PMID: 32173363 DOI: 10.1016/j.bcp.2020.113914] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
Abstract
Transcriptional coactivators p300 and CBP catalyze the acetylation of lysine residues in histone proteins. Upregulation of p300 and CBP has been associated with lung, colorectal and hepatocellular cancer, indicating an important role of p300 and CBP in tumorigenesis. Recently, the novel p300 and CBP-selective inhibitor A485 became available, which was shown to inhibit proliferation of 124 different cancer cell lines. Here, we found that downregulation of EP300 or CREBBP enhances apoptosis upon TRAIL stimulation in non-small-cell lung cancer (NSCLC) cells. A485 upregulates pro- and anti-apoptotic genes at the mRNA level, implying an apoptosis-modulating effect in NSCLC cells. However, A485 alone does not induce apoptosis. Interestingly, we observed that the number of apoptotic cells increases upon combined treatment with A485 and TRAIL. Therefore, A485, as a TRAIL-sensitizer, was used in combination with TRAIL in wild type of NSCLC cell lines (HCC827 and H1650) and cells with acquired erlotinib resistance (HCC827-ER and H1650-ER). Our results show that the combination of A485 and TRAIL synergistically increases cell death and inhibits long-term cell proliferation. Furthermore, this combination inhibits the growth of 3D spheroids of EGFR-TKI-resistant cells. Taken together, we demonstrate a successful combination of A485 and TRAIL in EGFR-TKI-sensitive and resistant NSCLC cells.
Collapse
Affiliation(s)
- Baojie Zhang
- University of Groningen, Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, the Netherlands
| | - Deng Chen
- University of Groningen, Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, the Netherlands
| | - Bin Liu
- University of Groningen, Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, the Netherlands
| | - Frank J Dekker
- University of Groningen, Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, the Netherlands
| | - Wim J Quax
- University of Groningen, Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, the Netherlands.
| |
Collapse
|
20
|
Proietti G, Rainone G, Hintzen JCJ, Mecinović J. Exploring the Histone Acylome through Incorporation of γ-Thialysine on Histone Tails. Bioconjug Chem 2020; 31:844-851. [PMID: 32058696 DOI: 10.1021/acs.bioconjchem.0c00012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Histone lysine acetyltransferases (KATs) catalyze the transfer of the acetyl group from acetyl Coenzyme A to lysine residues in histones and nonhistone proteins. Here, we report biomolecular studies on epigenetic acetylation and related acylation reactions of lysine and γ-thialysine, a cysteine-derived lysine mimic, which can be site-specifically introduced to histone peptides and histone proteins. Enzyme assays demonstrate that human KATs catalyze an efficient acetylation and propionylation of histone peptides that possess lysine and γ-thialysine. Enzyme kinetics analyses reveal that lysine- and γ-thialysine-containing histone peptides exhibit indistinguishable Km values, whereas small differences in kcat values were observed. This work highlights that γ-thialysine may act as a representative and easily accessible lysine mimic for chemical and biochemical examinations of post-translationally modified histones.
Collapse
Affiliation(s)
- Giordano Proietti
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Giorgio Rainone
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Jordi C J Hintzen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
21
|
Huang M, Huang J, Zheng Y, Sun Q. Histone acetyltransferase inhibitors: An overview in synthesis, structure-activity relationship and molecular mechanism. Eur J Med Chem 2019; 178:259-286. [PMID: 31195169 DOI: 10.1016/j.ejmech.2019.05.078] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 02/05/2023]
Abstract
Acetylation, a key component in post-translational modification regulated by HATs and HDACs, is relevant to many crucial cellular contexts in organisms. Based on crucial pharmacophore patterns and the structure of targeted proteins, HAT inhibitors are designed and modified for higher affinity and better bioactivity. However, there are still some challenges, such as cell permeability, selectivity, toxicity and synthetic availability, which limit the improvement of HAT inhibitors. So far, only few HAT inhibitors have been approved for commercialization, indicating the urgent need for more successful and effective structure-based drug design and synthetic strategies. Here, we summarized three classes of HAT inhibitors based on their sources and structural scaffolds, emphasizing on their synthetic methods and structure-activity relationships and molecular mechanisms, hoping to facilitate the development and further application of HAT inhibitors.
Collapse
Affiliation(s)
- Mengyuan Huang
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jiangkun Huang
- Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yongcheng Zheng
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
22
|
The P-glycoprotein inhibitor diltiazem-like 8-(4-chlorophenyl)-5-methyl-8-[(2Z)-pent-2-en-1-yloxy]-8H-[1,2,4]oxadiazolo[3,4-c][1,4]thiazin-3-one inhibits esterase activity and H3 histone acetylation. Eur J Med Chem 2018; 164:1-7. [PMID: 30583246 DOI: 10.1016/j.ejmech.2018.12.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 01/13/2023]
Abstract
With the aim to reduce multidrug resistance several molecules were synthesized and tested for their ability to inhibit ATP-binding cassette (ABC) proteins, which are responsible for drugs transport out from cells. The compound 8-(4-chlorophenyl)-5-methyl-8-[(2Z)-pent-2-en-1-yloxy]-8H-[1,2,4]oxadiazolo[3,4-c][1,4]thiazin-3-one namely 2c, is structurally related to the myocardial-calcium-channel-modulator diltiazem and is considered one of the most efficient P-glycoprotein inhibitors, able to induce apoptosis at low concentrations of doxorubicin in multidrug resistant ovarian cells. In this study experiments were carried out to evaluate other biological activities of compound 2c. We verified the ability of 2c to inhibit ABC transporters do not involved in drug resistance and considering the inhibitory effect of diltiazem on recombinant human carboxylesterase, we observed its inhibitory effect on the esterase activity. Our findings demonstrated that 2c exhibits broad-spectrum activity as ABC transporters inhibitor being able to inhibit ABCC6, a protein belonging to the ABC family although poorly involved in drug resistance. 2c also inhibits cell esterase activity, acetylcholine esterase activity in vitro and cell histone H3 acetylation according to its structural homology with some known HAT inhibitors. The results obtained provide new knowledge on the biological activities of 2c and represent useful information when it is used as an inhibitor of drug resistance.
Collapse
|
23
|
Breen ME, Mapp AK. Modulating the masters: chemical tools to dissect CBP and p300 function. Curr Opin Chem Biol 2018; 45:195-203. [PMID: 30025258 DOI: 10.1016/j.cbpa.2018.06.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/25/2018] [Accepted: 06/02/2018] [Indexed: 01/07/2023]
Abstract
Dysregulation of transcription is found in nearly every human disease, and as a result there has been intense interest in developing new therapeutics that target regulators of transcription. CREB binding protein (CBP) and its paralogue p300 are attractive targets due to their function as `master coactivators'. Although inhibitors of several CBP/p300 domains have been identified, the selectivity of many of these compounds has remained underexplored. Here, we review recent successes in the development of chemical tools targeting several CBP/p300 domains with selectivity acceptable for use as chemical probes. Additionally, we highlight recent studies which have used these probes to expand our understanding of interdomain interactions and differential coactivator usage.
Collapse
Affiliation(s)
- Meghan E Breen
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216, USA
| | - Anna K Mapp
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216, USA.
| |
Collapse
|