1
|
Characterization of pyridomycin B reveals the formation of functional groups in antimycobacterial pyridomycin. Appl Environ Microbiol 2022; 88:e0203521. [PMID: 35108072 DOI: 10.1128/aem.02035-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyridomycin, a cyclodepsipeptide with potent antimycobacterial activity, specifically inhibits the InhA enoyl reductase of Mycobacteria tuberculosis. Structure-activity relationship studies indicated that the enolic acid moiety in pyridomycin core system is an important pharmacophoric group and the natural configuration of the C-10 hydroxyl contributes to the bioactivity of pyridomycin. The ring structure of pyridomycin was generated by the nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) hybrid system (PyrE-F-G). Bioinformatics analysis reveals that SDR family protein Pyr2 functions as a 3-oxoacyl ACP reductase in the pyridomycin pathway. Inactivation of pyr2 resulted in accumulation of pyridomycin B, a new pyridomycin analogue featured with enol moiety in pyridyl alanine moiety and a saturated 3-methylvaleric acid group. The elucidated structure of pyridomycin B suggests that rather than functioning as a post-tailoring enzyme, Pyr2 catalyzes ketoreduction to form the C-10 hydroxyl group in pyridyl alanine moiety and the double bond formation of the enolic acid moiety derived from isoleucine when the intermediate assembled by PKS-NRPS machinery is still tethered to the last NRPS module, in a special energy-saving manner. Ser-His-Lys residues constitute the active site of Pyr2, which is different from the typically conserved Tyr based catalytic triad in the majority of SDRs. Site-directed mutation identified that His154 in the active site is a critical residue for pyridomycin B production. These findings will improve our understanding of the pyridomycin biosynthetic logic, identify the missing link for the double bound formation of enol ester in pyridomycin and enable creating chemical diversity of pyridomycin derivatives. Importance Tuberculosis (TB) is one of the world's leading causes of death by infection. Recently, pyridomycin, the antituberculous natural product from Streptomyces has garnered considerable attention for being determined as a target inhibitor of InhA enoyl reductase of Mycobacteria tuberculosis. In this study, we report a new pyridomycin analogue from mutant HTT12, demonstrate the essential role of a previously ignored gene pyr2 in pyridomycin biosynthetic pathway, and imply that Pyr2 functions as a trans ketoreductase (KR) contributing to the formation of functional groups of pyridomycin utilize a distinct catalytic mechanism. As enol moiety are important for pharmaceutical activities of pyridomycin, our work would expand the understanding the mechanism of SDR family proteins and set the stage for future bioengineering of new pyridomycin derivatives.
Collapse
|
2
|
Baptista R, Bhowmick S, Shen J, Mur LAJ. Molecular Docking Suggests the Targets of Anti-Mycobacterial Natural Products. Molecules 2021; 26:475. [PMID: 33477495 PMCID: PMC7831053 DOI: 10.3390/molecules26020475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 11/16/2022] Open
Abstract
Tuberculosis (TB) is a major global threat, mostly due to the development of antibiotic-resistant forms of Mycobacterium tuberculosis, the causal agent of the disease. Driven by the pressing need for new anti-mycobacterial agents several natural products (NPs) have been shown to have in vitro activities against M. tuberculosis. The utility of any NP as a drug lead is augmented when the anti-mycobacterial target(s) is unknown. To suggest these, we used a molecular reverse docking approach to predict the interactions of 53 selected anti-mycobacterial NPs against known "druggable" mycobacterial targets ClpP1P2, DprE1, InhA, KasA, PanK, PknB and Pks13. The docking scores/binding free energies were predicted and calculated using AutoDock Vina along with physicochemical and structural properties of the NPs, using PaDEL descriptors. These were compared to the established inhibitor (control) drugs for each mycobacterial target. The specific interactions of the bisbenzylisoquinoline alkaloids 2-nortiliacorinine, tiliacorine and 13'-bromotiliacorinine against the targets PknB and DprE1 (-11.4, -10.9 and -9.8 kcal·mol-1; -12.7, -10.9 and -10.3 kcal·mol-1, respectively) and the lignan α-cubebin and Pks13 (-11.0 kcal·mol-1) had significantly superior docking scores compared to controls. Our approach can be used to suggest predicted targets for the NP to be validated experimentally, but these in silico steps are likely to facilitate drug optimization.
Collapse
Affiliation(s)
- Rafael Baptista
- Institute of Biological, Environmental and Rural Sciences, Penglais Campus, Aberystwyth University, Aberystwyth, Wales SY23 2DA, UK; (R.B.); (S.B.)
| | - Sumana Bhowmick
- Institute of Biological, Environmental and Rural Sciences, Penglais Campus, Aberystwyth University, Aberystwyth, Wales SY23 2DA, UK; (R.B.); (S.B.)
| | - Jianying Shen
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Luis A. J. Mur
- Institute of Biological, Environmental and Rural Sciences, Penglais Campus, Aberystwyth University, Aberystwyth, Wales SY23 2DA, UK; (R.B.); (S.B.)
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
3
|
Wolf NM, Lee H, Zagal D, Nam JW, Oh DC, Lee H, Suh JW, Pauli GF, Cho S, Abad-Zapatero C. Structure of the N-terminal domain of ClpC1 in complex with the antituberculosis natural product ecumicin reveals unique binding interactions. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:458-471. [PMID: 32355042 PMCID: PMC7193532 DOI: 10.1107/s2059798320004027] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/22/2020] [Indexed: 11/10/2022]
Abstract
The biological processes related to protein homeostasis in Mycobacterium tuberculosis, the etiologic agent of tuberculosis, have recently been established as critical pathways for therapeutic intervention. Proteins of particular interest are ClpC1 and the ClpC1-ClpP1-ClpP2 proteasome complex. The structure of the potent antituberculosis macrocyclic depsipeptide ecumicin complexed with the N-terminal domain of ClpC1 (ClpC1-NTD) is presented here. Crystals of the ClpC1-NTD-ecumicin complex were monoclinic (unit-cell parameters a = 80.0, b = 130.0, c = 112.0 Å, β = 90.07°; space group P21; 12 complexes per asymmetric unit) and diffracted to 2.5 Å resolution. The structure was solved by molecular replacement using the self-rotation function to resolve space-group ambiguities. The new structure of the ecumicin complex showed a unique 1:2 (target:ligand) stoichiometry exploiting the intramolecular dyad in the α-helical fold of the target N-terminal domain. The structure of the ecumicin complex unveiled extensive interactions in the uniquely extended N-terminus, a critical binding site for the known cyclopeptide complexes. This structure, in comparison with the previously reported rufomycin I complex, revealed unique features that could be relevant for understanding the mechanism of action of these potential antituberculosis drug leads. Comparison of the ecumicin complex and the ClpC1-NTD-L92S/L96P double-mutant structure with the available structures of rufomycin I and cyclomarin A complexes revealed a range of conformational changes available to this small N-terminal helical domain and the minor helical alterations involved in the antibiotic-resistance mechanism. The different modes of binding and structural alterations could be related to distinct modes of action.
Collapse
Affiliation(s)
- Nina M Wolf
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hyun Lee
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Daniel Zagal
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Joo Won Nam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Dong Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hanki Lee
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Cheoin-gu, Yongin-si, Gyeonggi-do 17058, Republic of Korea
| | - Joo Won Suh
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Cheoin-gu, Yongin-si, Gyeonggi-do 17058, Republic of Korea
| | - Guido F Pauli
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sanghyun Cho
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Celerino Abad-Zapatero
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|