1
|
Zhou Y, Li H, Tse E, Sun H. Metal-detection based techniques and their applications in metallobiology. Chem Sci 2024; 15:10264-10280. [PMID: 38994399 PMCID: PMC11234822 DOI: 10.1039/d4sc00108g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
Metals are essential for human health and play a crucial role in numerous biological processes and pathways. Gaining a deeper insight into these biological events will facilitate novel strategies for disease prevention, early detection, and personalized treatment. In recent years, there has been significant progress in the development of metal-detection based techniques from single cell metallome and proteome profiling to multiplex imaging, which greatly enhance our comprehension of the intricate roles played by metals in complex biological systems. This perspective summarizes the recent progress in advanced metal-detection based techniques and highlights successful applications in elucidating the roles of metals in biology and medicine. Technologies including machine learning that couple with single-cell analysis such as mass cytometry and their application in metallobiology, cancer biology and immunology are also emphasized. Finally, we provide insights into future prospects and challenges involved in metal-detection based techniques, with the aim of inspiring further methodological advancements and applications that are accessible to chemists, biologists, and clinicians.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Hongyan Li
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Eric Tse
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Hongzhe Sun
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| |
Collapse
|
2
|
Nazari S, Mosaffa F, Poustforoosh A, Mortazavi M, Saso L, Firuzi O, Moosavi F. Foretinib, a c-MET receptor tyrosine kinase inhibitor, tackles multidrug resistance in cancer cells by inhibiting ABCB1 and ABCG2 transporters. Toxicol Appl Pharmacol 2024; 484:116866. [PMID: 38367674 DOI: 10.1016/j.taap.2024.116866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND ABC transporter-mediated multidrug resistance (MDR) remains a major obstacle for cancer pharmacological treatment. Some tyrosine kinase inhibitors (TKIs) have been shown to reverse MDR. The present study was designed to evaluate for the first time whether foretinib, a multitargeted TKI, can circumvent ABCB1 and ABCG2-mediated MDR in treatment-resistant cancer models. METHODS Accumulation of fluorescent substrates of ABCB1 and ABCG2 in ABCB1-overexpressing MES-SA/DX5 and ABCG2-overexpressing MCF-7/MX and their parenteral cells was evaluated by flow cytometry. The growth inhibitory activity of single and combination therapy of foretinib and chemotherapeutic drugs on MDR cells was examined by MTT assay. Analysis of combined interaction effects was performed using CalcuSyn software. RESULTS It was firstly proved that foretinib increased the intracellular accumulation of rhodamine 123 and mitoxantrone in MES-SA/DX5 and MCF-7/MX cancer cells, with accumulation ratios of 12 and 2.2 at 25 μM concentration, respectively. However, it did not affect the accumulation of fluorescent substrates in the parental cells. Moreover, foretinib synergistically improved the cytotoxic effects of doxorubicin and mitoxantrone. The means of combination index (CI) values at fraction affected (Fa) values of 0.5, 0.75, and 0.9 were 0.64 ± 0.08 and 0.47 ± 0.09, in MES-SA/DX5 and MCF-7/MX cancer cells, respectively. In silico analysis also suggested that the drug-binding domain of ABCB1 and ABCG2 transporters could be considered as potential target for foretinib. CONCLUSION Overall, our results suggest that foretinib can target MDR-linked ABCB1 and ABCG2 transporters in clinical cancer therapy.
Collapse
Affiliation(s)
- Somayeh Nazari
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Poustforoosh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Motahareh Mortazavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Investigations of cellular copper metabolism in ovarian cancer cells using a ratiometric fluorescent copper dye. J Biol Inorg Chem 2023; 28:43-55. [PMID: 36469143 DOI: 10.1007/s00775-022-01978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/08/2022] [Indexed: 12/08/2022]
Abstract
Imbalances in metal homeostasis have been implicated in the progression and drug response of cancer cells. Understanding these changes will enable identification of new treatment regimes and precision medicine approaches to cancer treatment. In particular, there has been considerable interest in the interplay between copper homeostasis and response to platinum-based chemotherapeutic agents. Here, we have studied differences in the Cu uptake and distributions in the ovarian cancer cell line, A2780, and its cisplatin resistant form, A2780.CisR, by measuring total Cu content and the bioavailable Cu pool. Atomic absorption spectroscopy (AAS) revealed a lower total Cu uptake in A2780.CisR compared to A2780 cells. Conversely, live-cell confocal microscopy studies with the ratiometric Cu(I)-sensitive fluorescent dye, InCCu1, revealed higher relative cellular content of labile Cu in A2780.CisR cells compared with A2780 cells. These results demonstrate that Cu trafficking, homeostasis and speciation are different in the Pt-sensitive and resistant cells and may be associated with the predominance of different phenotypes for A2780 (epithelial) and A2780.CisR (mesenchymal) cells.
Collapse
|
4
|
Zhang Q, Ding J, Wang Y, He L, Xue F. Tumor microenvironment manipulates chemoresistance in ovarian cancer (Review). Oncol Rep 2022; 47:102. [PMID: 35362546 DOI: 10.3892/or.2022.8313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/22/2022] [Indexed: 11/05/2022] Open
Abstract
Ovarian cancer (OC) is the leading cause of mortality among the various types of gynecological cancer, and >75% of the cases are diagnosed at a late stage. Although platinum‑based chemotherapy is able to help the majority of patients to achieve remission, the disease frequently recurs and acquires chemoresistance, resulting in high mortality rates. The complexity of OC therapy is not solely governed by the intrinsic characteristics of the OC cells (OCCs) themselves, but is also largely dependent on the dynamic communication between OCCs and various components of their surrounding microenvironment. The present review attempts to describe the mutual interplay between OCCs and their surrounding microenvironment. Tumor‑associated macrophages (TAMs) and cancer‑associated fibroblasts (CAFs) are the most abundant stromal cell types in OC. Soluble factors derived from CAFs steadily nourish both the OCCs and TAMs, facilitating their proliferation and immune evasion. ATP binding cassette transporters facilitate the extrusion of cytotoxic molecules, eventually promoting cell survival and multidrug resistance. Extracellular vesicles fulfill their role as genetic exchange vectors, transferring cargo from the donor cells to the recipient cells and propagating oncogenic signaling. A greater understanding of the vital roles of the tumor microenvironment will allow researchers to be open to the prospect of developing therapeutic approaches for combating OC chemoresistance.
Collapse
Affiliation(s)
- Qiaoling Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jiashan Ding
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Linsheng He
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
5
|
Abstract
Metals are essential components in life processes and participate in many important biological processes. Dysregulation of metal homeostasis is correlated with many diseases. Metals are also frequently incorporated into diagnosis and therapeutics. Understanding of metal homeostasis under (patho)physiological conditions and the molecular mechanisms of action of metallodrugs in biological systems has positive impacts on human health. As an emerging interdisciplinary area of research, metalloproteomics involves investigating metal-protein interactions in biological systems at a proteome-wide scale, has received growing attention, and has been implemented into metal-related research. In this review, we summarize the recent advances in metalloproteomics methodologies and applications. We also highlight emerging single-cell metalloproteomics, including time-resolved inductively coupled plasma mass spectrometry, mass cytometry, and secondary ion mass spectrometry. Finally, we discuss future perspectives in metalloproteomics, aiming to attract more original research to develop more advanced methodologies, which could be utilized rapidly by biochemists or biologists to expand our knowledge of how metal functions in biology and medicine. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, University of Hong Kong, Hong Kong SAR, China; ,
| | - Hongyan Li
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, University of Hong Kong, Hong Kong SAR, China; ,
| | - Hongzhe Sun
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, University of Hong Kong, Hong Kong SAR, China; ,
| |
Collapse
|
6
|
Sojka M, Chyba J, Paul SS, Wawrocka K, Hönigová K, Cuyacot BJR, Castro AC, Vaculovič T, Marek J, Repisky M, Masařík M, Novotný J, Marek R. Supramolecular Coronation of Platinum(II) Complexes by Macrocycles: Structure, Relativistic DFT Calculations, and Biological Effects. Inorg Chem 2021; 60:17911-17925. [PMID: 34738800 DOI: 10.1021/acs.inorgchem.1c02467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Platinum-based anticancer drugs are actively developed utilizing lipophilic ligands or drug carriers for the efficient penetration of biomembranes, reduction of side effects, and tumor targeting. We report the development of a supramolecular host-guest system built on cationic platinum(II) compounds bearing ligands anchored in the cavity of the macrocyclic host. The host-guest binding and hydrolysis process on the platinum core were investigated in detail by using NMR, MS, X-ray diffraction, and relativistic DFT calculations. The encapsulation process in cucurbit[7]uril unequivocally promotes the stability of hydrolyzed dicationic cis-[PtII(NH3)2(H2O)(NH2-R)]2+ compared to its trans isomer. Biological screening on the ovarian cancer lines A2780 and A2780/CP shows time-dependent toxicity. Notably, the reported complex and its β-cyclodextrin (β-CD) assembly achieve the same cellular uptake as cisplatin and cisplatin@β-CD, respectively, while maintaining a significantly lower toxicity profile.
Collapse
Affiliation(s)
- Martin Sojka
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Jan Chyba
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Shib Shankar Paul
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Karolina Wawrocka
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Kateřina Hönigová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Ben Joseph R Cuyacot
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Abril C Castro
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Tomáš Vaculovič
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Jaromír Marek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Michal Repisky
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT - The Arctic University of Norway, 9037 Tromsø, Norway
| | - Michal Masařík
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Jan Novotný
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Radek Marek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| |
Collapse
|
7
|
Wang Q, Zhuo Z, Yu H, Wang C, Gao L. Circ_0019435 Exerts Its Functions in the Cellular Process of Cervical Cancer via Epigenetically Silencing DKK1 and PTEN. Reprod Sci 2021; 28:2989-2999. [PMID: 34037956 DOI: 10.1007/s43032-021-00625-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 05/16/2021] [Indexed: 01/22/2023]
Abstract
Cervical cancer (CC) is the most serious gynecological malignancy among women worldwide. As a subtype of noncoding RNAs (ncRNAs), circular RNAs (circRNAs) play important roles in the regulation of gene expression and cancer progression. It was discovered from the cancer-specific circRNA database (CSCD) that circ_0019435 was mainly distributed in the nucleus of HeLa-S3 cells. However, few researches have mentioned circ_0019435 with its function in cancers. The present study uncovered that circ_0019435 was upregulated in CC cells by qRT-PCR. Moreover, circ_0019435 was more stable than its linear isoform-ABCC2. Besides, no regulation of circ_0019435 on ABCC2 and the chemoresistance of CC cells were found. Then, it was unveiled by a series of functional assays including colony formation, trypan blue staining, and transwell invasion assays in that circ_0019435 ablation induced the suppression of proliferation, invasion, and EMT of HeLa and SiHa cells. The subcellular distribution of circ_0019435 was assessed by subcellular fractionation and FISH assay. Furthermore, it was disclosed that circ_0019435 binds to EZH2 to silence DKK1 and PTEN. Finally, rescue assays corroborated that DKK1 and PTEN were involved in circ_0019435-mediated CC cell progression. In conclusion, circ_0019435 regulates DKK1 and PTEN expression at the epigenetic level, thereby influencing the progression of CC cells.
Collapse
Affiliation(s)
- Qiming Wang
- Department of Gynecology, Ningbo Women & Children's Hospital, Ningbo, 315012, Zhejiang, China
| | - Zhihong Zhuo
- Department of Gynecology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, Zhejiang, China.
| | - Huimin Yu
- Department of Gynecology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, Zhejiang, China
| | - Chuhan Wang
- Department of Gynecology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, Zhejiang, China
| | - Li Gao
- Department of Gynecology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, Zhejiang, China
| |
Collapse
|
8
|
Phenotypic Characterization by Mass Cytometry of the Microenvironment in Ovarian Cancer and Impact of Tumor Dissociation Methods. Cancers (Basel) 2021; 13:cancers13040755. [PMID: 33670410 PMCID: PMC7918057 DOI: 10.3390/cancers13040755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary High-grade serous ovarian cancer (HGSOC) is the deadliest gynecological malignancy. Despite increasing research on HGSOC, biomarkers for individualized selection of therapy are scarce. In this study, we develop a multiparametric mass cytometry antibody panel to identify differences in the cellular composition of the microenvironment of tumor tissues dissociated to single-cell suspensions. We also investigate how dissociation methods impact results. Application of our antibody panel to HGSOC tissues showed its ability to identify established main cell subsets and subpopulations of these cells. Comparisons between dissociation methods revealed differences in cell fractions for one immune, two stromal, and three tumor cell subpopulations, while functional marker expression was not affected by the dissociation method. The interpatient disparities identified in the tumor microenvironment were more significant than those identified between differently dissociated tissues from one patient, indicating that the panel facilitates the mapping of individual tumor microenvironments in HGSOC patients. Abstract Improved molecular dissection of the tumor microenvironment (TME) holds promise for treating high-grade serous ovarian cancer (HGSOC), a gynecological malignancy with high mortality. Reliable disease-related biomarkers are scarce, but single-cell mapping of the TME could identify patient-specific prognostic differences. To avoid technical variation effects, however, tissue dissociation effects on single cells must be considered. We present a novel Cytometry by Time-of-Flight antibody panel for single-cell suspensions to identify individual TME profiles of HGSOC patients and evaluate the effects of dissociation methods on results. The panel was developed utilizing cell lines, healthy donor blood, and stem cells and was applied to HGSOC tissues dissociated by six methods. Data were analyzed using Cytobank and X-shift and illustrated by t-distributed stochastic neighbor embedding plots, heatmaps, and stacked bar and error plots. The panel distinguishes the main cellular subsets and subpopulations, enabling characterization of individual TME profiles. The dissociation method affected some immune (n = 1), stromal (n = 2), and tumor (n = 3) subsets, while functional marker expressions remained comparable. In conclusion, the panel can identify subsets of the HGSOC TME and can be used for in-depth profiling. This panel represents a promising profiling tool for HGSOC when tissue handling is considered.
Collapse
|
9
|
Chen Y, Zhou H, Yang S, Su D. Increased ABCC2 expression predicts cisplatin resistance in non-small cell lung cancer. Cell Biochem Funct 2020; 39:277-286. [PMID: 32815556 PMCID: PMC7983913 DOI: 10.1002/cbf.3577] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/26/2020] [Accepted: 07/05/2020] [Indexed: 12/23/2022]
Abstract
Long-term use of platinum-based drugs can cause non-small cell lung cancer (NSCLC) to develop extremely strong drug resistance. Increasing the drug dosage does not have better treatment effects and could lead to serious complications. High levels of drug resistance are considered to be characteristic of human tumours and are usually mediated by genes related to multidrug resistance. Multidrug resistance-associated protein 2 (ABCC2), an ATP-binding cassette multidrug resistance transporter, was found to be overexpressed in various human cancers. In this study, we found that ABCC2 was also upregulated in cisplatin (DDP)-resistant A549 cells (A549/DDP). Functional studies demonstrated that ABCC2 knockdown reversed DDP resistance and promoted G1 phase arrest in A549/DDP cells, and PARP and caspase-3 were activated in A549/DDP cells following ABCC2 knockdown. In vivo, ABCC2 knockdown enhanced the cytotoxicity of DDP to subcutaneous A549 tumours. Together, these results suggest that ABCC2 may be a potential therapeutic strategy for overcoming DDP resistance in NSCLC patients. SIGNIFICANCE OF THE STUDY: In this study, we investigated the role of ABCC2 in cisplatin resistance of NSCLC cells. Our data show that ABCC2 expression was associated with resistance to cisplatin and that knockdown ABCC2 could reverse cisplatin resistance in NSCLC cells. Taken together, our study suggests that reducing the expression of ABCC2 could become an important strategy for enhancing the sensitivity of NSCLC cells to cisplatin.
Collapse
Affiliation(s)
- Yun Chen
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Hongying Zhou
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Sifu Yang
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Dan Su
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
10
|
Waas M, Kislinger T. Addressing Cellular Heterogeneity in Cancer through Precision Proteomics. J Proteome Res 2020; 19:3607-3619. [PMID: 32697918 DOI: 10.1021/acs.jproteome.0c00338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cells exhibit a broad spectrum of functions driven by differences in molecular phenotype. Understanding the heterogeneity between and within cell types has led to advances in our ability to diagnose and manipulate biological systems. Heterogeneity within and between tumors still poses a challenge to the development and efficacy of therapeutics. In this Perspective we review the toolkit of protein-level experimental approaches for investigating cellular heterogeneity. We describe how innovative approaches and technical developments have supported the advent of bottom-up single-cell proteomic analysis and present opportunities and challenges within cancer research. Finally, we introduce the concept of "precision proteomics" and discuss how the advantages and limitations of various experimental approaches render them suitable for different biological systems and questions.
Collapse
|
11
|
Alamolhodaei NS, Rashidpour H, Ehtesham gharaee M, Behravan J, Mosaffa F. Overexpression of ABCC2 and NF-Κβ/p65 with Reduction in Cisplatin and 4OH-Tamoxifen Sensitivity in MCF-7 Breast Cancer Cells: The Influence of TNF-α. PHARMACEUTICAL SCIENCES 2020; 26:150-158. [DOI: 10.34172/ps.2020.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Background:
TNF-α, as a pro-inflammatory cytokine in the tumor microenvironment is able to regulate the expression and function of various ATP binding cassette (ABC) transporters involved in clinical drug resistance and among them, ABCC2 transporter is represented to contribute to cancer multidrug resistance (MDR) by drug efflux. Methods: In this study, we aimed to evaluate the effects of TNF-α and/or E2 (17β-estradiol) on the mRNA and protein expression levels of ABCC2 and NF-κB (p65) transcription factor in estrogen receptor positive (ER+) MCF-7 cells by QRT-PCR and Western blot analysis. Also, we used MTT assay to study the cell sensitivity against the active form of tamoxifen (4OH-TAM), a hypothetical substrate and Cisplatin (Cis), a well-known substrate for ABCC2 used in endocrine and chemo-therapy of breast cancers, respectively. Data were analyzed by one-way ANOVA and Tukey tests. Significance was considered in P-values < 0.05. Results: The expression levels of ABCC2 and the active form of NF-κB (p65) were significantly increased following 20-day concomitant treatment with TNF-α and E2, compared to untreated cells as control. Also, the viability assay showed that 20-day TNF-α+E2 treatment led to more sensitivity reduction of MCF-7 cells to Cis and 4OH-TAM compared to E2-treated and untreated cells. Conclusion: Based on our findings, there is a positive correlation between ABCC2 overexpression, over-activity of NF-ҡB/p65 and decreasing the sensitivity of MCF-7 cells to Cis and 4OH-TAM following TNF-α treatment in MCF-7 cells. Further experiments are needed to elucidate possible mechanistic relationship of these findings and their clinical significance in order to circumvent the drug-resistance in breast tumors.
Collapse
Affiliation(s)
- Nafiseh Sadat Alamolhodaei
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hatam Rashidpour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Melika Ehtesham gharaee
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Behravan
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Overcoming Resistance to Platinum-Based Drugs in Ovarian Cancer by Salinomycin and Its Derivatives-An In Vitro Study. Molecules 2020; 25:molecules25030537. [PMID: 31991882 PMCID: PMC7037477 DOI: 10.3390/molecules25030537] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/16/2022] Open
Abstract
Polyether ionophore salinomycin (SAL) and its semi-synthetic derivatives are recognized as very promising anticancer drug candidates due to their activity against various types of cancer cells, including multidrug-resistant populations. Ovarian cancer is the deadliest among gynecologic malignancies, which is connected with the development of chemoresistant forms of the disease in over 70% of patients after initial treatment regimen. Thus, we decided to examine the anticancer properties of SAL and selected SAL derivatives against a series of drug-sensitive (A2780, SK-OV-3) and derived drug-resistant (A2780 CDDP, SK-OV-3 CDDP) ovarian cancer cell lines. Although SAL analogs showed less promising IC50 values than SAL, they were identified as the antitumor agents that significantly overcome the resistance to platinum-based drugs in ovarian cancer, more potent than unmodified SAL and commonly used anticancer drugs—5-fluorouracil, gemcitabine, and cisplatin. Moreover, when compared with SAL used alone, our experiments proved for the first time increased selectivity of SAL-based dual therapy with 5-fluorouracil or gemcitabine, especially towards A2780 cell line. Looking closer at the results, SAL acted synergistically with 5-fluorouracil towards the drug-resistant A2780 cell line. Our results suggest that combinations of SAL with other antineoplastics may become a new therapeutic option for patients with ovarian cancer.
Collapse
|
13
|
Ismail NA, Salman AA, Mohd Yusof MS, Che Soh SK, Kadir Pahirulzaman KA, Ali HM, Sarip R. Synthesis, cytotoxicity and antineoplastic activities of novel acridine-based platinum(II) organometallic complexes. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
An Y, Zhou L, Huang Z, Nice EC, Zhang H, Huang C. Molecular insights into cancer drug resistance from a proteomics perspective. Expert Rev Proteomics 2019; 16:413-429. [PMID: 30925852 DOI: 10.1080/14789450.2019.1601561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Resistance to chemotherapy and development of specific and effective molecular targeted therapies are major obstacles facing current cancer treatment. Comparative proteomic approaches have been employed for the discovery of putative biomarkers associated with cancer drug resistance and have yielded a number of candidate proteins, showing great promise for both novel drug target identification and personalized medicine for the treatment of drug-resistant cancer. Areas covered: Herein, we review the recent advances and challenges in proteomics studies on cancer drug resistance with an emphasis on biomarker discovery, as well as understanding the interconnectivity of proteins in disease-related signaling pathways. In addition, we highlight the critical role that post-translational modifications (PTMs) play in the mechanisms of cancer drug resistance. Expert opinion: Revealing changes in proteome profiles and the role of PTMs in drug-resistant cancer is key to deciphering the mechanisms of treatment resistance. With the development of sensitive and specific mass spectrometry (MS)-based proteomics and related technologies, it is now possible to investigate in depth potential biomarkers and the molecular mechanisms of cancer drug resistance, assisting the development of individualized therapeutic strategies for cancer patients.
Collapse
Affiliation(s)
- Yao An
- a West China School of Basic Medical Sciences & Forensic Medicine , Sichuan University , Chengdu , PR China.,b Department of Oncology , The Second Affiliated Hospital of Hainan Medical University , Haikou , P.R. China
| | - Li Zhou
- a West China School of Basic Medical Sciences & Forensic Medicine , Sichuan University , Chengdu , PR China
| | - Zhao Huang
- a West China School of Basic Medical Sciences & Forensic Medicine , Sichuan University , Chengdu , PR China
| | - Edouard C Nice
- c Department of Biochemistry and Molecular Biology , Monash University , Clayton , Australia
| | - Haiyuan Zhang
- b Department of Oncology , The Second Affiliated Hospital of Hainan Medical University , Haikou , P.R. China
| | - Canhua Huang
- a West China School of Basic Medical Sciences & Forensic Medicine , Sichuan University , Chengdu , PR China.,b Department of Oncology , The Second Affiliated Hospital of Hainan Medical University , Haikou , P.R. China
| |
Collapse
|
15
|
Moreira T, Francisco R, Comsa E, Duban-Deweer S, Labas V, Teixeira-Gomes AP, Combes-Soia L, Marques F, Matos A, Favrelle A, Rousseau C, Zinck P, Falson P, Garcia MH, Preto A, Valente A. Polymer "ruthenium-cyclopentadienyl" conjugates - New emerging anti-cancer drugs. Eur J Med Chem 2019; 168:373-384. [PMID: 30826512 DOI: 10.1016/j.ejmech.2019.02.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 12/12/2022]
Abstract
In this work, we aimed to understand the biological activity and the mechanism of action of three polymer-'ruthenium-cyclopentadienyl' conjugates (RuPMC) and a low molecular weight parental compound (Ru1) in cancer cells. Several biological assays were performed in ovarian (A2780) and breast (MCF7, MDA-MB-231) human cancer derived cell lines as well as in A2780cis, a cisplatin resistant cancer cell line. Our results show that all compounds have high activity towards cancer cells with low IC50 values in the micromolar range. We observed that all Ru-PMC compounds are mainly found inside the cells, in contrast with the parental low molecular weight compound Ru1 that was mainly found at the membrane. All compounds induced mitochondrial alterations. PMC3 and Ru1 caused F-actin cytoskeleton morphology changes and reduced the clonogenic ability of the cells. The conjugate PMC3 induced apoptosis at low concentrations comparing to cisplatin and could overcame the platinum resistance of A2780cis cancer cells. A proteomic analysis showed that these compounds induce alterations in several cellular proteins which are related to the phenotypic disorders induced by them. Our results suggest that PMC3 is foreseen as a lead candidate to future studies and acting through a different mechanism of action than cisplatin. Here we established the potential of these Ru compounds as new metallodrugs for cancer chemotherapy.
Collapse
Affiliation(s)
- Tiago Moreira
- Centro de Química Estrutural, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Portugal. Campus de Gualtar, Braga, 4710-057, Portugal
| | - Rita Francisco
- Centro de Química Estrutural, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Portugal. Campus de Gualtar, Braga, 4710-057, Portugal
| | - Elisabeta Comsa
- Drug Resistance & Membrane Proteins Team, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS-UCBL1 UMR 5086, IBCP, 69367, Lyon, France
| | - Sophie Duban-Deweer
- Laboratoire de la barrière hémato-encéphalique (LBHE), Plateau Spectrométrie de Masse de l'ARTois (SMART), Université d'Artois, EA 2465, Lens, F-62300, France
| | - Valérie Labas
- Plate-forme de Chirurgie et d'Imagerie pour la Recherche et l'Enseignement (CIRE), Pôle d'Analyse et d'Imagerie des Biomolécules (PAIB), PR China, INRA, CNRS, Université de Tours, IFCE, 37380, Nouzilly, France
| | - Ana-Paula Teixeira-Gomes
- Plate-forme de Chirurgie et d'Imagerie pour la Recherche et l'Enseignement (CIRE), Pôle d'Analyse et d'Imagerie des Biomolécules (PAIB), PR China, INRA, CNRS, Université de Tours, IFCE, 37380, Nouzilly, France
| | - Lucie Combes-Soia
- Plate-forme de Chirurgie et d'Imagerie pour la Recherche et l'Enseignement (CIRE), Pôle d'Analyse et d'Imagerie des Biomolécules (PAIB), PR China, INRA, CNRS, Université de Tours, IFCE, 37380, Nouzilly, France
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, E.N.10, 2695-066, Bobadela LRS, Portugal
| | - António Matos
- Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior CRL, Campus Universitário, Quinta da Granja, Monte de Caparica, 2829-511, Caparica, Portugal
| | - Audrey Favrelle
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| | - Cyril Rousseau
- Unity of Catalysis and Solid State Chemistry, UMR CNRS 8181, University of Artois, 62000, Lens, France
| | - Philippe Zinck
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| | - Pierre Falson
- Drug Resistance & Membrane Proteins Team, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS-UCBL1 UMR 5086, IBCP, 69367, Lyon, France
| | - M Helena Garcia
- Centro de Química Estrutural, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Ana Preto
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Portugal. Campus de Gualtar, Braga, 4710-057, Portugal
| | - Andreia Valente
- Centro de Química Estrutural, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| |
Collapse
|
16
|
Mistry AM, Greenplate AR, Ihrie RA, Irish JM. Beyond the message: advantages of snapshot proteomics with single-cell mass cytometry in solid tumors. FEBS J 2019; 286:1523-1539. [PMID: 30549207 DOI: 10.1111/febs.14730] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/17/2018] [Accepted: 12/12/2018] [Indexed: 12/19/2022]
Abstract
Single-cell technologies that can quantify features of individual cells within a tumor are critical for treatment strategies aiming to target cancer cells while sparing or activating beneficial cells. Given that key players in protein networks are often the primary targets of precision oncology strategies, it is imperative to transcend the nucleic acid message and read cellular actions in human solid tumors. Here, we review the advantages of multiplex, single-cell mass cytometry in tissue and solid tumor investigations. Mass cytometry can quantitatively probe nearly any cellular feature or target. In discussing the ability of mass cytometry to reveal and characterize a broad spectrum of cell types, identify rare cells, and study functional behavior through protein signaling networks in millions of individual cells from a tumor, this review surveys publications of scientific advances in solid tumor biology made with the aid of mass cytometry. Advances discussed include functional identification of rare tumor and tumor-infiltrating immune cells and dissection of cellular mechanisms of immunotherapy in solid tumors and the periphery. The review concludes by highlighting ways to incorporate single-cell mass cytometry in solid tumor precision oncology efforts and rapidly developing cytometry techniques for quantifying cell location and sequenced nucleic acids.
Collapse
Affiliation(s)
- Akshitkumar M Mistry
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Allison R Greenplate
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rebecca A Ihrie
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan M Irish
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
17
|
Olsen LR, Leipold MD, Pedersen CB, Maecker HT. The anatomy of single cell mass cytometry data. Cytometry A 2018; 95:156-172. [DOI: 10.1002/cyto.a.23621] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/28/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Lars R. Olsen
- Department of Bio and Health InformaticsTechnical University of Denmark Copenhagen Denmark
- Center for Genomic MedicineCopenhagen University Hospital Copenhagen Denmark
| | - Michael D. Leipold
- Institute for Immunity, Transplantation, and InfectionStanford University School of Medicine Stanford CA
| | - Christina B. Pedersen
- Department of Bio and Health InformaticsTechnical University of Denmark Copenhagen Denmark
- Center for Genomic MedicineCopenhagen University Hospital Copenhagen Denmark
| | - Holden Terry Maecker
- Institute for Immunity, Transplantation, and InfectionStanford University School of Medicine Stanford CA
| |
Collapse
|
18
|
Small-molecule compounds targeting the STAT3 DNA-binding domain suppress survival of cisplatin-resistant human ovarian cancer cells by inducing apoptosis. Eur J Med Chem 2018; 157:887-897. [DOI: 10.1016/j.ejmech.2018.08.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/19/2018] [Accepted: 08/12/2018] [Indexed: 12/24/2022]
|