1
|
Hu D, Long X, Luobu T, Wang Q. Current status of research on endophytes of traditional Tibetan medicinal plant and their metabolites. 3 Biotech 2023; 13:338. [PMID: 37705864 PMCID: PMC10495306 DOI: 10.1007/s13205-023-03720-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/29/2023] [Indexed: 09/15/2023] Open
Abstract
The Qinghai-Tibet Plateau, known as the "Third Pole of the World," has a rich variety of medicinal plants that play an important role in the field of medicine due to its unique geographical environment. However, due to the limited resources of Tibetan medicinal plants and the fragility of the ecological environment of the Qinghai-Tibet Plateau, more and more Tibetan medicinal plants are on the verge of extinction. As a reservoir of biologically active metabolites, endophytes of medicinal plants produce a large number of compounds with potential applications in modern medicine (including antibacterial, immunosuppressive, antiviral, and anticancer) and are expected to be substitutes for Tibetan medicinal plants. This paper reviews 12 Tibetan medicinal plants from the Qinghai-Tibet Plateau, highlighting the diversity of their endophytes, the diversity of their metabolites and their applications. The results show that the endophytes of Tibetan medicinal plants are remarkably diverse, and the efficacy of their metabolites involves various aspects, such as antioxidant, anti-disease and anti-parasitic. In addition, conservation measures for the resources of Tibetan medicinal plants are summarised to provide a reference for an in-depth understanding of the endophytes of Tibetan medicinal plants and to stimulate the scientific community to bioprospect for the endophytes of Tibetan medicinal plants, as well as to provide ideas for their rational exploitation.
Collapse
Affiliation(s)
- Danni Hu
- Wuhan University of Technology, Wuhan, China
| | | | - Tudan Luobu
- Pharmacy Department, Tibetan Hospital of Gongga County, Shannan, China
| | - Qi Wang
- Wuhan University of Technology, Wuhan, China
| |
Collapse
|
2
|
Shan ZJ, Ye JF, Hao DC, Xiao PG, Chen ZD, Lu AM. Distribution patterns and industry planning of commonly used traditional Chinese medicinal plants in China. PLANT DIVERSITY 2022; 44:255-261. [PMID: 35769595 PMCID: PMC9209863 DOI: 10.1016/j.pld.2021.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 05/05/2023]
Abstract
Medicinal plants are the primary material basis for disease prevention and treatment in traditional Chinese medicine (TCM). The conservation and sustainable utilization of these medicinal plants is critical for the development of the TCM industry. However, wild medicinal plant resources have sharply declined in recent decades. To ameliorate the shortage of medicinal plant resources, it is essential to explore the development potential of the TCM industry in different geographical regions. For this purpose, we examined the spatial distribution of commonly used medicinal plants in China, the number of Chinese medicinal material markets, and the number of TCM decoction piece enterprises. Specifically, multispecies superimposition analysis and Thiessen polygons were used to reveal the optimal range for planting bulk medicinal plants and the ideal regions for building Chinese medicinal material markets, respectively. Furthermore, we quantitatively analyzed mismatches between the spatial distribution of commonly used medicinal plant richness, Chinese medicinal material markets, and TCM decoction piece enterprises. We found that the areas suitable for growing commonly used medicinal plants in China were mainly distributed in Hengduan Mountain, Nanling Mountain, Wuling Mountain, and Daba Mountain areas. The Thiessen polygon network based on Chinese medicinal material market localities showed there are currently fewer markets in southwestern, northwestern, and northeastern China than in central and southern China. TCM decoction piece enterprises are concentrated in a few provinces, such as Hebei and Jiangxi. We found that the distribution of commonly used medicinal plants, Chinese medicinal material markets and TCM decoction piece enterprises are mismatched in Henan, Shaanxi, Hunan, Hubei, Zhejiang, Fujian, Chongqing, and Xizang. We recommend strengthening development of the TCM industry in Henan, Hunan, Zhejiang, Shaanxi, Hubei, Chongqing, Fujian, and Xizang; building more Chinese medicinal material markets in southwestern, northwestern, and northeastern China; and establishing medicinal plant nurseries in resource-rich provinces to better protect and domesticate local medicinal plants.
Collapse
Affiliation(s)
- Zhang-Jian Shan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Fei Ye
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Corresponding author. State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China.
| | - Da-Cheng Hao
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Zhi-Duan Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - An-Ming Lu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
3
|
Distribution of Therapeutic Efficacy of Ranunculales Plants Used by Ethnic Minorities on the Phylogenetic Tree of Chinese Species. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9027727. [PMID: 35069772 PMCID: PMC8769838 DOI: 10.1155/2022/9027727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022]
Abstract
The medicinal properties of plants can be evolutionarily predicted by phylogeny-based methods, which, however, have not been used to explore the regularity of therapeutic effects of Chinese plants utilized by ethnic minorities. This study aims at exploring the distribution law of therapeutic efficacy of Ranunculales plants on the phylogenetic tree of Chinese species. We collected therapeutic efficacy data of 551 ethnomedicinal species belonging to five species-rich families of Ranunculales; these therapeutic data were divided into 15 categories according to the impacted tissues and organs. The phylogenetic tree of angiosperm species was used to analyze the phylogenetic signals of ethnomedicinal plants by calculating the net relatedness index (NRI) and nearest taxon index (NTI) in R language. The NRI results revealed a clustered structure for eight medicinal categories (poisoning/intoxication, circulatory, gastrointestinal, eyesight, oral, pediatric, skin, and urinary disorders) and overdispersion for the remaining seven (neurological, general, hepatobiliary, musculoskeletal, otolaryngologic, reproductive, and respiratory disorders), while the NTI metric identified the clustered structure for all. Statistically, NRI and NTI values were significant in 5 and 11 categories, respectively. It was found that Mahonia eurybracteata has therapeutic effects on all categories. iTOL was used to visualize the distribution of treatment efficacy on species phylogenetic trees. By figuring out the distribution of therapeutic effects of Ranunculales medicinal plants, the importance of phylogenetic methods in finding potential medicinal resources is highlighted; NRI, NTI, and similar indices can be calculated to help find taxonomic groups with medicinal efficacy based on the phylogenetic tree of flora in different geographic regions.
Collapse
|
4
|
Yan LS, Cheng BCY, Zhang SF, Luo G, Zhang C, Wang QG, Fu XQ, Wang YW, Zhang Y. Tibetan Medicine for Diabetes Mellitus: Overview of Pharmacological Perspectives. Front Pharmacol 2021; 12:748500. [PMID: 34744728 PMCID: PMC8566911 DOI: 10.3389/fphar.2021.748500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Diabetes mellitus (DM) and its complications pose a major public health threat which is approaching epidemic proportions globally. Current drug options may not provide good efficacy and even cause serious adverse effects. Seeking safe and effective agents for DM treatment has been an area of intensive interest. As a healing system originating in Tibet, Traditional Tibetan Medicine (TTM) has been widely used by Tibetan people for the prevention and treatment of DM and its complications for hundreds of years. Tibetan Materia Medica (TMM) including the flower of Edgeworthia gardneri (Wall.) Meisn., Phyllanthi Fructus, Chebulae Fructus, Huidouba, and Berberidis Cortex are most frequently used and studied. These TMMs possess hypoglycemic, anti-insulin resistant, anti-glycation, lipid lowering, anti-inflammatory, and anti-oxidative effects. The underlying mechanisms of these actions may be related to their α-glucosidase inhibitory, insulin signaling promoting, PPARs-activating, gut microbiota modulation, islet β cell-preserving, and TNF-α signaling suppressive properties. This review presents a comprehensive overview of the mode and mechanisms of action of various active constituents, extracts, preparations, and formulas from TMM. The dynamic beneficial effects of the products prepared from TMM for the management of DM and its complications are summarized. These TMMs are valuable materia medica which have the potential to be developed as safe and effective anti-DM agents.
Collapse
Affiliation(s)
- Li-Shan Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Brian Chi-Yan Cheng
- College of Professional and Continuing Education, Hong Kong Polytechnic University, Hong Kong, China
| | - Shuo-Feng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Gan Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chao Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qing-Gao Wang
- First Affiliated Hospital, Guangxi University of Chinese Medicine, Guangxi, China
| | - Xiu-Qiong Fu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yi-Wei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Gomes LMF, Mahammed A, Prosser KE, Smith JR, Silverman MA, Walsby CJ, Gross Z, Storr T. A catalytic antioxidant for limiting amyloid-beta peptide aggregation and reactive oxygen species generation. Chem Sci 2019; 10:1634-1643. [PMID: 30842826 PMCID: PMC6369440 DOI: 10.1039/c8sc04660c] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/27/2018] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is a multifaceted disease that is characterized by increased oxidative stress, metal-ion dysregulation, and the formation of intracellular neurofibrillary tangles and extracellular amyloid-β (Aβ) aggregates. In this work we report the large affinity binding of the iron(iii) 2,17-bis-sulfonato-5,10,15-tris(pentafluorophenyl)corrole complex FeL1 to the Aβ peptide (K d ∼ 10-7) and the ability of the bound FeL1 to act as a catalytic antioxidant in both the presence and absence of Cu(ii) ions. Specific findings are that: (a) an Aβ histidine residue binds axially to FeL1; (b) that the resulting adduct is an efficient catalase; (c) this interaction restricts the formation of high molecular weight peptide aggregates. UV-Vis and electron paramagnetic resonance (EPR) studies show that although the binding of FeL1 does not influence the Aβ-Cu(ii) interaction (K d ∼ 10-10), bound FeL1 still acts as an antioxidant thereby significantly limiting reactive oxygen species (ROS) generation from Aβ-Cu. Overall, FeL1 is shown to bind to the Aβ peptide, and modulate peptide aggregation. In addition, FeL1 forms a ternary species with Aβ-Cu(ii) and impedes ROS generation, thus showing the promise of discrete metal complexes to limit the toxicity pathways of the Aβ peptide.
Collapse
Affiliation(s)
- Luiza M F Gomes
- Department of Chemistry , Simon Fraser University , V5A-1S6 , Burnaby , BC , Canada .
| | - Atif Mahammed
- Schulich Faculty of Chemistry , Technion-Israel Institute of Technology , Haifa , 32000 , Israel .
| | - Kathleen E Prosser
- Department of Chemistry , Simon Fraser University , V5A-1S6 , Burnaby , BC , Canada .
| | - Jason R Smith
- Department of Chemistry , Simon Fraser University , V5A-1S6 , Burnaby , BC , Canada .
| | - Michael A Silverman
- Department of Biological Sciences , Simon Fraser University , V5A-1S6 , Burnaby , BC , Canada
| | - Charles J Walsby
- Department of Chemistry , Simon Fraser University , V5A-1S6 , Burnaby , BC , Canada .
| | - Zeev Gross
- Schulich Faculty of Chemistry , Technion-Israel Institute of Technology , Haifa , 32000 , Israel .
| | - Tim Storr
- Department of Chemistry , Simon Fraser University , V5A-1S6 , Burnaby , BC , Canada .
| |
Collapse
|