1
|
Azevedo Teotônio Cavalcanti MD, Da Silva Menezes KJ, Oliveira Viana JD, Oliveira Rios ÉD, Corrêa de Farias AG, Weber KC, Nogueira F, Dos Santos Nascimento IJ, de Moura RO. Current trends to design antimalarial drugs targeting N-myristoyltransferase. Future Microbiol 2024:1-18. [PMID: 39440556 DOI: 10.1080/17460913.2024.2412397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
Malaria is a disease caused by Plasmodium spp., of which Plasmodium falciparum and Plasmodium vivax are the most prevalent. Unfortunately, traditional and some current treatment regimens face growing protozoan resistance. Thus, searching for and exploring new drugs and targets is necessary. One of these is N-myristoyltransferase (NMT). This enzyme is responsible for the myristoylation of several protein substrates in eukaryotic cells, including Plasmodium spp., thus enabling the assembly of protein complexes and stabilization of protein-membrane interactions. Given the importance of this target in developing new antiparasitic drugs, this review aims to explore the recent advances in the design of antimalarial drugs to target Plasmodium NMT.
Collapse
Affiliation(s)
- Misael de Azevedo Teotônio Cavalcanti
- Postgraduate Program of Pharmaceutical Sciences, Pharmacy Department, State University of Paraíba, Campina, Grande-PB, Brazil
- Drug Development & Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina, Grande, 58429-500, Brazil
| | - Karla Joane Da Silva Menezes
- Drug Development & Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina, Grande, 58429-500, Brazil
- Postgraduate Program of Drug Development & Technology Innovation, Federal University of Paraíba, João Pessoa, 58051-900, Brazil
| | - Jéssika De Oliveira Viana
- Postgraduate Program of Chemistry, Department of Chemistry, Federal University of Paraíba, João Pessoa, 58051-970, Brazil
| | | | - Arthur Gabriel Corrêa de Farias
- Drug Development & Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina, Grande, 58429-500, Brazil
| | - Karen Cacilda Weber
- Postgraduate Program of Chemistry, Department of Chemistry, Federal University of Paraíba, João Pessoa, 58051-970, Brazil
| | - Fatima Nogueira
- Universidade NOVA de Lisboa, UNL, Global Health & Tropical Medicine, GHTM, Associate Laboratory in Translation & Innovation Towards Global Health, LAREAL, Instituto de Higiene e Medicina Tropical, IHMT, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
- LAQV-REQUIMTE, MolSyn, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
| | - Igor José Dos Santos Nascimento
- Postgraduate Program of Pharmaceutical Sciences, Pharmacy Department, State University of Paraíba, Campina, Grande-PB, Brazil
- Drug Development & Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina, Grande, 58429-500, Brazil
- Cesmac University Center, Pharmacy Department, Maceió, 57051-180, Brazil
| | - Ricardo Olimpio de Moura
- Postgraduate Program of Pharmaceutical Sciences, Pharmacy Department, State University of Paraíba, Campina, Grande-PB, Brazil
- Drug Development & Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina, Grande, 58429-500, Brazil
- Postgraduate Program of Drug Development & Technology Innovation, Federal University of Paraíba, João Pessoa, 58051-900, Brazil
| |
Collapse
|
2
|
Daniyan MO. pyGROMODS: a Python package for the generation of input files for molecular dynamic simulation with GROMACS. J Biomol Struct Dyn 2024; 42:7207-7220. [PMID: 37489036 DOI: 10.1080/07391102.2023.2239929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/15/2023] [Indexed: 07/26/2023]
Abstract
The pyGROMODS, an easy-to-use cross-platform python-based package, with a graphical user interface, for the generation of molecular dynamic (MD) input files and running MD simulation (MDS) of proteins, peptides, and protein-ligand complex using GROMACS, is here presented. Four routes, with underlining Python scripts, are implemented in pyGROMODS for the generation of MD input files. They are 'RLmulti' for processing multi-ligand protein complex, 'RLmany' for processing multiple ligands against a single protein target, 'RLsingle' for processing multiple pairs of proteins and ligands, and 'PPmore' for processing peptides or proteins without ligands or non-standard residues. In addition, using the package, the generated input files or appropriate input files from other sources can be uploaded to run MDS with GROMACS. The pyGROMODS is implemented with a unique ability to search the host machine systems for the installation of the required software, update and/or install required Python packages, allow the user to pre-define working directory, and generate unique workflow organization with well-defined folders and files in a well-organized manner. The pyGROMODS, which is released under the MIT License, is freely available for download via the GitHub (https://github.com/Dankem/pyGROMODS) and Zenodo (https://doi.org/10.5281/zenodo.7912747) repositories. The precompiled executables can also be downloaded from Zenodo (https://doi.org/10.5281/zenodo.8087090), and a video tutorial can be downloaded from https://youtu.be/I4OKc6uVx1M.Communicated by Ramaswamy H. Sarma.
Collapse
|
3
|
Huang B, Bai Z, Ye X, Zhou C, Xie X, Zhong Y, Lin K, Ma L. Structural analysis and binding sites of inhibitors targeting the CD47/SIRPα interaction in anticancer therapy. Comput Struct Biotechnol J 2021; 19:5494-5503. [PMID: 34712395 PMCID: PMC8517548 DOI: 10.1016/j.csbj.2021.09.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/18/2021] [Accepted: 09/30/2021] [Indexed: 12/28/2022] Open
Abstract
Cluster of differentiation 47 (CD47)/signal regulatory protein alpha (SIRPα) is a negative innate immune checkpoint signaling pathway that restrains immunosurveillance and immune clearance, and thus has aroused wide interest in cancer immunotherapy. Blockade of the CD47/SIRPα signaling pathway shows remarkable antitumor effects in clinical trials. Currently, all inhibitors targeting CD47/SIRPα in clinical trials are biomacromolecules. The poor permeability and undesirable oral bioavailability of biomacromolecules have caused researchers to develop small-molecule CD47/SIRPα pathway inhibitors. This review will summarize the recent advances in CD47/SIRPα interactions, including crystal structures, peptides and small molecule inhibitors. In particular, we have employed computer-aided drug discovery (CADD) approaches to analyze all the published crystal structures and docking results of small molecule inhibitors of CD47/SIRPα, providing insight into the key interaction information to facilitate future development of small molecule CD47/SIRPα inhibitors.
Collapse
Affiliation(s)
- Bo Huang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu 211198, China
| | - Zhaoshi Bai
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu 210009, China
| | - Xinyue Ye
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu 211198, China
| | - Chenyu Zhou
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu 211198, China
| | - Xiaolin Xie
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu 211198, China
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu 211198, China
| | - Yuejiao Zhong
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu 210009, China
| | - Kejiang Lin
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu 211198, China
| | - Lingman Ma
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu 211198, China
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu 211198, China
| |
Collapse
|
4
|
Daniyan MO. Heat Shock Proteins as Targets for Novel Antimalarial Drug Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:205-236. [PMID: 34569027 DOI: 10.1007/978-3-030-78397-6_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Plasmodium falciparum, the parasitic agent that is responsible for a severe and dangerous form of human malaria, has a history of long years of cohabitation with human beings with attendant negative consequences. While there have been some gains in the fight against malaria through the application of various control measures and the use of chemotherapeutic agents, and despite the global decline in malaria cases and associated deaths, the continual search for new and effective therapeutic agents is key to achieving sustainable development goals. An important parasite survival strategy, which is also of serious concern to the scientific community, is the rate at which the parasites continually develop resistance to drugs. Among the key players in the parasite's ability to develop resistance, maintain cellular integrity, and survives within an unusual environment of the red blood cells are the molecular chaperones of the heat shock proteins (HSP) family. HSPs constitute a novel avenue for antimalarial drug discovery and by exploring their ubiquitous nature and multifunctional activities, they may be suitable targets for the discovery of multi-targets antimalarial drugs, needed to fight incessant drug resistance. In this chapter, features of selected families of plasmodial HSPs that can be exploited in drug discovery are presented. Also, known applications of HSPs in small molecule screening, their potential usefulness in high throughput drug screening, as well as possible challenges are highlighted.
Collapse
Affiliation(s)
- Michael Oluwatoyin Daniyan
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria.
| |
Collapse
|
5
|
Antiplasmodial activity of sulfonylhydrazones: in vitro and in silico approaches. Future Med Chem 2020; 13:233-250. [PMID: 33295837 DOI: 10.4155/fmc-2020-0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Malaria is still a life-threatening public health issue, and the upsurge of resistant strains requires continuous generation of active molecules. In this work, 35 sulfonylhydrazone derivatives were synthesized and evaluated against Plasmodium falciparum chloroquine-sensitive (3D7) and resistant (W2) strains. The most promising compound, 5b, had an IC50 of 0.22 μM against W2 and was less cytotoxic and 26-fold more selective than chloroquine. The structure-activity relationship model, statistical analysis and molecular modeling studies suggested that antiplasmodial activity was related to hydrogen bond acceptor count, molecular weight and partition coefficient of octanol/water and displacement of frontier orbitals to the heteroaromatic ring beside the imine bond. This study demonstrates that the synthesized molecules with a simple scaffold allow the hit-to-lead process for new antimalarials to commence.
Collapse
|