1
|
Calderón JC, Ibrahim P, Gobbo D, Gervasio FL, Clark T. Determinants of Neutral Antagonism and Inverse Agonism in the β 2-Adrenergic Receptor. J Chem Inf Model 2024; 64:2045-2057. [PMID: 38447156 DOI: 10.1021/acs.jcim.3c01763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Free-energy profiles for the activation/deactivation of the β2-adrenergic receptor (ADRB2) with neutral antagonist and inverse agonist ligands have been determined with well-tempered multiple-walker (MW) metadynamics simulations. The inverse agonists carazolol and ICI118551 clearly favor single inactive conformational minima in both the binary and ternary ligand-receptor-G-protein complexes, in accord with the inverse-agonist activity of the ligands. The behavior of neutral antagonists is more complex, as they seem also to affect the recruitment of the G-protein. The results are analyzed in terms of the conformational states of the well-known microswitches that have been proposed as indicators of receptor activity.
Collapse
Affiliation(s)
- Jacqueline C Calderón
- Computer-Chemistry-Center, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuernberg, Naegelsbachstr. 25, 91052 Erlangen, Germany
| | - Passainte Ibrahim
- Institute of Medical Physics and Biophysics, Faculty of Medicine, University of Leipzig, 04107 Leipzig, Germany
| | - Dorothea Gobbo
- Pharmaceutical Sciences, University of Geneva, CH1206 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, CH1206 Geneva, Switzerland
| | - Francesco Luigi Gervasio
- Pharmaceutical Sciences, University of Geneva, CH1206 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, CH1206 Geneva, Switzerland
- Chemistry Department, University College London, WC1H 0AJ London, United Kingdom
- Swiss Bioinformatics Institute, CH1206 Geneva, Switzerland
| | - Timothy Clark
- Computer-Chemistry-Center, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuernberg, Naegelsbachstr. 25, 91052 Erlangen, Germany
| |
Collapse
|
2
|
Abrol R, Serrano E, Santiago LJ. Development of enhanced conformational sampling methods to probe the activation landscape of GPCRs. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:325-359. [PMID: 35034722 PMCID: PMC11476118 DOI: 10.1016/bs.apcsb.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
G protein-coupled receptors (GPCRs) make up the largest superfamily of integral membrane proteins and play critical signal transduction roles in many physiological processes. Developments in molecular biology, biophysical, biochemical, pharmacological, and computational techniques aimed at these important therapeutic targets are beginning to provide unprecedented details on the structural as well as functional basis of their pleiotropic signaling mediated by G proteins, β arrestins, and other transducers. This pleiotropy presents a pharmacological challenge as the same ligand-receptor interaction can cause a therapeutic effect as well as an undesirable on-target side-effect through different downstream pathways. GPCRs don't function as simple binary on-off switches but as finely tuned shape-shifting machines described by conformational ensembles, where unique subsets of conformations may be responsible for specific signaling cascades. X-ray crystallography and more recently cryo-electron microscopy are providing snapshots of some of these functionally-important receptor conformations bound to ligands and/or transducers, which are being utilized by computational methods to describe the dynamic conformational energy landscape of GPCRs. In this chapter, we review the progress in computational conformational sampling methods based on molecular dynamics and discrete sampling approaches that have been successful in complementing biophysical and biochemical studies on these receptors in terms of their activation mechanisms, allosteric effects, actions of biased ligands, and effects of pathological mutations. Some of the sampled simulation time scales are beginning to approach receptor activation time scales. The list of conformational sampling methods and example uses discussed is not exhaustive but includes representative examples that have pushed the limits of classical molecular dynamics and discrete sampling methods to describe the activation energy landscape of GPCRs.
Collapse
Affiliation(s)
- Ravinder Abrol
- Department of Chemistry and Biochemistry, California State University, Northridge, CA, United States.
| | - Erik Serrano
- Department of Chemistry and Biochemistry, California State University, Northridge, CA, United States
| | - Luis Jaimes Santiago
- Department of Chemistry and Biochemistry, California State University, Northridge, CA, United States
| |
Collapse
|
3
|
Deganutti G, Atanasio S, Rujan RM, Sexton PM, Wootten D, Reynolds CA. Exploring Ligand Binding to Calcitonin Gene-Related Peptide Receptors. Front Mol Biosci 2021; 8:720561. [PMID: 34513925 PMCID: PMC8427520 DOI: 10.3389/fmolb.2021.720561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/13/2021] [Indexed: 01/31/2023] Open
Abstract
Class B1 G protein-coupled receptors (GPCRs) are important targets for many diseases, including cancer, diabetes, and heart disease. All the approved drugs for this receptor family are peptides that mimic the endogenous activating hormones. An understanding of how agonists bind and activate class B1 GPCRs is fundamental for the development of therapeutic small molecules. We combined supervised molecular dynamics (SuMD) and classic molecular dynamics (cMD) simulations to study the binding of the calcitonin gene-related peptide (CGRP) to the CGRP receptor (CGRPR). We also evaluated the association and dissociation of the antagonist telcagepant from the extracellular domain (ECD) of CGRPR and the water network perturbation upon binding. This study, which represents the first example of dynamic docking of a class B1 GPCR peptide, delivers insights on several aspects of ligand binding to CGRPR, expanding understanding of the role of the ECD and the receptor-activity modifying protein 1 (RAMP1) on agonist selectivity.
Collapse
Affiliation(s)
- Giuseppe Deganutti
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Silvia Atanasio
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Roxana-Maria Rujan
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Patrick M. Sexton
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | |
Collapse
|
4
|
Deganutti G, Barkan K, Preti B, Leuenberger M, Wall M, Frenguelli BG, Lochner M, Ladds G, Reynolds CA. Deciphering the Agonist Binding Mechanism to the Adenosine A1 Receptor. ACS Pharmacol Transl Sci 2021; 4:314-326. [PMID: 33615181 PMCID: PMC7887845 DOI: 10.1021/acsptsci.0c00195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 12/21/2022]
Abstract
Despite being among the most characterized G protein-coupled receptors (GPCRs), adenosine receptors (ARs) have always been a difficult target in drug design. To date, no agonist other than the natural effector and the diagnostic regadenoson has been approved for human use. Recently, the structure of the adenosine A1 receptor (A1R) was determined in the active, Gi protein complexed state; this has important repercussions for structure-based drug design. Here, we employed supervised molecular dynamics simulations and mutagenesis experiments to extend the structural knowledge of the binding of selective agonists to A1R. Our results identify new residues involved in the association and dissociation pathway, they suggest the binding mode of N6-cyclopentyladenosine (CPA) related ligands, and they highlight the dramatic effect that chemical modifications can have on the overall binding mechanism, paving the way for the rational development of a structure-kinetics relationship of A1R agonists.
Collapse
Affiliation(s)
- Giuseppe Deganutti
- Centre
for Sport, Exercise and Life Sciences, Faculty of Health and Life
Sciences, Coventry University, Alison Gingell Building, Coventry CV1 5FB, U.K.
| | - Kerry Barkan
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, U.K.
| | - Barbara Preti
- Institute
of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Michele Leuenberger
- Institute
of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Mark Wall
- School
of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Bruno G. Frenguelli
- School
of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Martin Lochner
- Institute
of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Graham Ladds
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, U.K.
| | - Christopher A. Reynolds
- Centre
for Sport, Exercise and Life Sciences, Faculty of Health and Life
Sciences, Coventry University, Alison Gingell Building, Coventry CV1 5FB, U.K.
| |
Collapse
|
5
|
The Potential of 19F NMR Application in GPCR Biased Drug Discovery. Trends Pharmacol Sci 2020; 42:19-30. [PMID: 33250272 DOI: 10.1016/j.tips.2020.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/16/2020] [Accepted: 11/02/2020] [Indexed: 01/14/2023]
Abstract
Although structure-based virtual drug discovery is revolutionizing the conventional high-throughput cell-based screening system, its limitation is obvious, together with other critical challenges. In particular, the resolved static snapshots fail to represent a full free-energy landscape due to homogenization in structural determination processing. The loss of conformational heterogeneity and related functional diversity emphasize the necessity of developing an approach that can fill this space. In this regard, NMR holds undeniable potential. However, outstanding questions regarding the NMR application remain. This review summarizes the limitations of current drug discovery and explores the potential of 19F NMR in establishing a conformation-guided drug screening system, advancing the cell- and structure-based discovery strategy for G protein-coupled receptor (GPCR) biased drug screening.
Collapse
|
6
|
Computational Investigations on the Binding Mode of Ligands for the Cannabinoid-Activated G Protein-Coupled Receptor GPR18. Biomolecules 2020; 10:biom10050686. [PMID: 32365486 PMCID: PMC7277601 DOI: 10.3390/biom10050686] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
GPR18 is an orphan G protein-coupled receptor (GPCR) expressed in cells of the immune system. It is activated by the cannabinoid receptor (CB) agonist ∆9-tetrahydrocannabinol (THC). Several further lipids have been proposed to act as GPR18 agonists, but these results still require unambiguous confirmation. In the present study, we constructed a homology model of the human GPR18 based on an ensemble of three GPCR crystal structures to investigate the binding modes of the agonist THC and the recently reported antagonists which feature an imidazothiazinone core to which a (substituted) phenyl ring is connected via a lipophilic linker. Docking and molecular dynamics simulation studies were performed. As a result, a hydrophobic binding pocket is predicted to accommodate the imidazothiazinone core, while the terminal phenyl ring projects towards an aromatic pocket. Hydrophobic interaction of Cys251 with substituents on the phenyl ring could explain the high potency of the most potent derivatives. Molecular dynamics simulation studies suggest that the binding of imidazothiazinone antagonists stabilizes transmembrane regions TM1, TM6 and TM7 of the receptor through a salt bridge between Asp118 and Lys133. The agonist THC is presumed to bind differently to GPR18 than to the distantly related CB receptors. This study provides insights into the binding mode of GPR18 agonists and antagonists which will facilitate future drug design for this promising potential drug target.
Collapse
|
7
|
Mitusińska K, Skalski T, Góra A. Simple Selection Procedure to Distinguish between Static and Flexible Loops. Int J Mol Sci 2020; 21:ijms21072293. [PMID: 32225102 PMCID: PMC7177474 DOI: 10.3390/ijms21072293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/02/2022] Open
Abstract
Loops are the most variable and unorganized elements of the secondary structure of proteins. Their ability to shift their shape can play a role in the binding of small ligands, enzymatic catalysis, or protein–protein interactions. Due to the loop flexibility, the positions of their residues in solved structures show the largest B-factors, or in a worst-case scenario can be unknown. Based on the loops’ movements’ timeline, they can be divided into slow (static) and fast (flexible). Although most of the loops that are missing in experimental structures belong to the flexible loops group, the computational tools for loop reconstruction use a set of static loop conformations to predict the missing part of the structure and evaluate the model. We believe that these two loop types can adopt different conformations and that using scoring functions appropriate for static loops is not sufficient for flexible loops. We showed that common model evaluation methods, are insufficient in the case of flexible solvent-exposed loops. Instead, we recommend using the potential energy to evaluate such loop models. We provide a novel model selection method based on a set of geometrical parameters to distinguish between flexible and static loops without the use of molecular dynamics simulations. We have also pointed out the importance of water network and interactions with the solvent for the flexible loop modeling.
Collapse
Affiliation(s)
- Karolina Mitusińska
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego 8, 44-100 Gliwice, Poland;
| | - Tomasz Skalski
- Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego 8, 44-100 Gliwice, Poland;
| | - Artur Góra
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego 8, 44-100 Gliwice, Poland;
- Correspondence: ; Tel.: +48-322371659
| |
Collapse
|
8
|
Deganutti G, Moro S, Reynolds CA. A Supervised Molecular Dynamics Approach to Unbiased Ligand–Protein Unbinding. J Chem Inf Model 2020; 60:1804-1817. [DOI: 10.1021/acs.jcim.9b01094] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Giuseppe Deganutti
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom
| | - Stefano Moro
- Molecular Modeling Section, Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Christopher A. Reynolds
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom
| |
Collapse
|
9
|
Welcome to Volume 12 of Future Medicinal Chemistry. Future Med Chem 2020; 12:1-3. [PMID: 31902248 DOI: 10.4155/fmc-2019-0297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|