1
|
Experimental and computation studies of a Zn(II) coordination complex with isophthalic acid and benzimidazole as ligands. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
2
|
Identification of metabolite extraction method for targeted exploration of antimicrobial resistance associated metabolites of Klebsiella pneumoniae. Sci Rep 2022; 12:8939. [PMID: 35624184 PMCID: PMC9142494 DOI: 10.1038/s41598-022-12153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/22/2022] [Indexed: 11/08/2022] Open
Abstract
Antimicrobial resistant Klebsiella pneumoniae (K. pneumoniae), as being a pathogen of critical clinical concern, urgently demands effective therapeutic options. However, the discovery of novel antibiotics over the last three decades has declined drastically and necessitates exploring novel strategies. Metabolomic modulation has been the promising approach for the development of effective therapeutics to deal with AMR; however, only limited efforts have been made to-date, possibly due to the unavailability of suitable metabolites extraction protocols. Therefore, in order to establish a detailed metabolome of K. pneumoniae and identify a method for targeted exploration of metabolites that are involved in the regulation of AMR associated processes, metabolites were extracted using multiple methods of metabolites extraction (freeze-thaw cycle (FTC) and sonication cycle (SC) method alone or in combination (FTC followed by SC; FTC + SC)) from K. pneumoniae cells and then identified using an orbitrap mass analyzer (ESI-LC-MS/MS). A total of 151 metabolites were identified by using FTC, 132 metabolites by using FTC+SC, 103 metabolites by using SC and 69 metabolites common among all the methods used which altogether enabled the identification of 199 unique metabolites. Of these 199, 70 metabolites were known to have an association with AMR phenotype and among these, the FTC + SC method yielded better (identified 55 metabolites), quantitatively and qualitatively compared to FTC and SC alone (identified 51 and 41 metabolites respectively). Each method of metabolite extraction showed a definite degree of biasness and specificity towards chemical classes of metabolites and jointly contributed to the development of a detailed metabolome of the pathogen. FTC method was observed to give higher metabolomic coverage as compared to SC alone and FTC + SC. However, FTC + SC resulted in the identification of a higher number of AMR associated metabolites of K. pneumoniae compared to FTC and SC alone.
Collapse
|
3
|
Design, Synthesis and In Vitro Antimicrobial Activity of 6-(1H-Benzimidazol-2-yl)-3,5-dimethyl-4-oxo-2-thio-3,4-dihydrothieno[2,3-d]pyrimidines. Sci Pharm 2021. [DOI: 10.3390/scipharm89040049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The rapid development in bacterial resistance to many groups of known antibiotics forces the researchers to discover antibacterial drug candidates with previously unknown mechanisms of action, one of the most relevant being the inhibition of tRNA (Guanine37-N1)-methyltransferase (TrmD). The discovery of selective TrmD inhibitors in the series of carboxamide derivatives of thienopyrimidines became a background for further modification of the similar structures aimed at the development of promising antibacterial agents. As part of this research, we carried out the construction of heterocyclic hybrids bearing the moieties of thieno[2,3-d]pyrimidine and benzimidazole starting from 3,5-dimethyl-4-oxo-2-thioxo-1H-thieno[2,3-d]pyrimidine-6-carboxylic acid, which was used as the pivotal intermediate. The hybrid molecule of 6-(1H-benzimidazol-2-yl)-3,5-dimethyl-2-thioxo-1H-thieno[2,3-d]pyrimidin-4-one prepared via condensation of the carboxylic acid with ortho-phenylenediamine was further alkylated with aryl/hetaryl chloroacetamides and benzyl chloride to produce the series of S-alkyl derivatives. The results of molecular docking studies for the obtained series of S-alkyl benzimidazole-thienopyrimidines showed their high affinity to the TrmD isolated from the P. aeruginosa. The results of antimicrobial activity screening revealed the antimicrobial properties for all of the studied molecules against both Gram-positive and Gram-negative bacteria and the Candida albicans fungal strain. The highest antimicrobial activity was determined for 2-{[6-(1H-benzimidazol-2-yl)-3,5-dimethyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-2-yl]thio}-N-(4-isopropylphenyl)acetamide, which also had the highest affinity to the TrmD inhibitor’s binding site according to the docking studies results.
Collapse
|
4
|
Santos VC, Oliveira AER, Campos ACB, Reis-Cunha JL, Bartholomeu DC, Teixeira SMR, Lima APCA, Ferreira RS. The gene repertoire of the main cysteine protease of Trypanosoma cruzi, cruzipain, reveals four sub-types with distinct active sites. Sci Rep 2021; 11:18231. [PMID: 34521898 PMCID: PMC8440672 DOI: 10.1038/s41598-021-97490-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cruzipains are the main papain-like cysteine proteases of Trypanosoma cruzi, the protozoan parasite that causes Chagas disease. Encoded by a multigenic family, previous studies have estimated the presence of dozens of copies spread over multiple chromosomes in different parasite strains. Here, we describe the complete gene repertoire of cruzipain in three parasite strains, their genomic organization, and expression pattern throughout the parasite life cycle. Furthermore, we have analyzed primary sequence variations among distinct family members as well as structural differences between the main groups of cruzipains. Based on phylogenetic inferences and residue positions crucial for enzyme function and specificity, we propose the classification of cruzipains into two families (I and II), whose genes are distributed in two or three separate clusters in the parasite genome, according with the strain. Family I comprises nearly identical copies to the previously characterized cruzipain 1/cruzain, whereas Family II encompasses three structurally distinct sub-types, named cruzipain 2, cruzipain 3, and cruzipain 4. RNA-seq data derived from the CL Brener strain indicates that Family I genes are mainly expressed by epimastigotes, whereas trypomastigotes mainly express Family II genes. Significant differences in the active sites among the enzyme sub-types were also identified, which may play a role in their substrate selectivity and impact their inhibition by small molecules.
Collapse
Affiliation(s)
- Viviane Corrêa Santos
- grid.8430.f0000 0001 2181 4888Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Antonio Edson Rocha Oliveira
- grid.8430.f0000 0001 2181 4888Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil ,grid.11899.380000 0004 1937 0722Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Augusto César Broilo Campos
- grid.8430.f0000 0001 2181 4888Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - João Luís Reis-Cunha
- grid.8430.f0000 0001 2181 4888Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil ,grid.8430.f0000 0001 2181 4888Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | | | - Santuza Maria Ribeiro Teixeira
- grid.8430.f0000 0001 2181 4888Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Ana Paula C. A. Lima
- grid.8536.80000 0001 2294 473XInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ Brazil
| | - Rafaela Salgado Ferreira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
5
|
Barbosa da Silva E, Rocha DA, Fortes IS, Yang W, Monti L, Siqueira-Neto JL, Caffrey CR, McKerrow J, Andrade SF, Ferreira RS. Structure-Based Optimization of Quinazolines as Cruzain and TbrCATL Inhibitors. J Med Chem 2021; 64:13054-13071. [PMID: 34461718 DOI: 10.1021/acs.jmedchem.1c01151] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cysteine proteases, cruzain and TbrCATL (rhodesain), are therapeutic targets for Chagas disease and Human African Trypanosomiasis, respectively. Among the known inhibitors for these proteases, we have described N4-benzyl-N2-phenylquinazoline-2,4-diamine (compound 7 in the original publication, 1a in this study), as a competitive cruzain inhibitor (Ki = 1.4 μM). Here, we describe the synthesis and biological evaluation of 22 analogs of 1a, containing modifications in the quinazoline core, and in the substituents in positions 2 and 4 of this ring. The analogs demonstrate low micromolar inhibition of the target proteases and cidal activity against Trypanosoma cruzi with up to two log selectivity indices in counterscreens with myoblasts. Fourteen compounds were active against Trypanosoma brucei at low to mid micromolar concentrations. During the optimization of 1a, structure-based design and prediction of physicochemical properties were employed to maintain potency against the enzymes while removing colloidal aggregator characteristics observed for some molecules in this series.
Collapse
Affiliation(s)
- Elany Barbosa da Silva
- Biochemistry and Immunology Department, Biological Sciences Institute, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31270-901, Brazil.,Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0657, United States
| | - Débora A Rocha
- Pharmaceutical Synthesis Group (PHARSG), Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90040-060, Brazil.,Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90040-060, Brazil
| | - Isadora S Fortes
- Pharmaceutical Synthesis Group (PHARSG), Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90040-060, Brazil.,Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90040-060, Brazil
| | - Wenqian Yang
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0657, United States
| | - Ludovica Monti
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0657, United States
| | - Jair L Siqueira-Neto
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0657, United States
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0657, United States
| | - James McKerrow
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0657, United States
| | - Saulo F Andrade
- Pharmaceutical Synthesis Group (PHARSG), Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90040-060, Brazil.,Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90040-060, Brazil.,Graduate Program in Agricultural and Environmental Microbiology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90040-060, Brazil
| | - Rafaela S Ferreira
- Biochemistry and Immunology Department, Biological Sciences Institute, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31270-901, Brazil
| |
Collapse
|
6
|
Pereira GAN, da Silva EB, Braga SFP, Leite PG, Martins LC, Vieira RP, Soh WT, Villela FS, Costa FMR, Ray D, de Andrade SF, Brandstetter H, Oliveira RB, Caffrey CR, Machado FS, Ferreira RS. Discovery and characterization of trypanocidal cysteine protease inhibitors from the 'malaria box'. Eur J Med Chem 2019; 179:765-778. [PMID: 31284086 DOI: 10.1016/j.ejmech.2019.06.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 02/04/2023]
Abstract
Chagas disease, Human African Trypanosomiasis, and schistosomiasis are neglected parasitic diseases for which new treatments are urgently needed. To identify new chemical leads, we screened the 400 compounds of the Open Access Malaria Box against the cysteine proteases, cruzain (Trypanosoma cruzi), rhodesain (Trypanosoma brucei) and SmCB1 (Schistosoma mansoni), which are therapeutic targets for these diseases. Whereas just three hits were observed for SmCB1, 70 compounds inhibited cruzain or rhodesain by at least 50% at 5 μM. Among those, 15 commercially available compounds were selected for confirmatory assays, given their potency, time-dependent inhibition profile and reported activity against parasites. Additional assays led to the confirmation of four novel classes of cruzain and rhodesain inhibitors, with potency in the low-to mid-micromolar range against enzymes and T. cruzi. Assays against mammalian cathepsins S and B revealed inhibitor selectivity for parasitic proteases. For the two competitive inhibitors identified (compounds 7 and 12), their binding mode was predicted by docking, providing a basis for structure-based optimization efforts. Compound 12 also acted directly against the trypomastigote and the intracellular amastigote forms of T. cruzi at 3 μM. Therefore, through a combination of experimental and computational approaches, we report promising hits for optimization in the development of new trypanocidal drugs.
Collapse
Affiliation(s)
- Glaécia A N Pereira
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil; CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, Brazil
| | - Elany B da Silva
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Saulo F P Braga
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil; CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, Brazil
| | - Paulo Gaio Leite
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Luan C Martins
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Rafael P Vieira
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil; CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, Brazil
| | - Wai Tuck Soh
- Structural Biology Group By Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Filipe S Villela
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Francielly M R Costa
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Debalina Ray
- University of California San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA
| | - Saulo F de Andrade
- Pharmaceutical Synthesis Group (PHARSG), Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Hans Brandstetter
- Structural Biology Group By Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Renata B Oliveira
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Fabiana S Machado
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Rafaela S Ferreira
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|