1
|
Chua AJ, Francesco VD, Huang D, D'Souza A, Bleier BS, Amiji MM. Nanotechnology-enabled topical delivery of therapeutics in chronic rhinosinusitis. Nanomedicine (Lond) 2023; 18:1399-1415. [PMID: 37800470 DOI: 10.2217/nnm-2023-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is a chronic inflammatory disease of the paranasal sinuses which represents a significant health burden due to its widespread prevalence and impact on patients' quality of life. As the molecular pathways driving and sustaining inflammation in CRS become better elucidated, the diversity of treatment options is likely to widen significantly. Nanotechnology offers several tools to enhance the effectiveness of topical therapies, which has been limited by factors such as poor drug retention, mucosal permeation and adhesion, removal by epithelial efflux pumps and the inability to effectively penetrate biofilms. In this review, we highlight the successful application of nanomedicine in the field of CRS therapeutics, discuss current limitations and propose opportunities for future work.
Collapse
Affiliation(s)
- Andy J Chua
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 140 The Fenway Building, MA 02115, USA
- Department of Otolaryngology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
- Department of Otorhinolaryngology - Head & Neck Surgery, Sengkang General Hospital, 110 Sengkang E Way, 544886, Singapore
| | - Valentina Di Francesco
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 140 The Fenway Building, MA 02115, USA
| | - Di Huang
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 140 The Fenway Building, MA 02115, USA
- Department of Otolaryngology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Anisha D'Souza
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 140 The Fenway Building, MA 02115, USA
- Department of Otolaryngology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Benjamin S Bleier
- Department of Otolaryngology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 140 The Fenway Building, MA 02115, USA
- Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA
| |
Collapse
|
2
|
Kumar L, Bisen M, Harjai K, Chhibber S, Azizov S, Lalhlenmawia H, Kumar D. Advances in Nanotechnology for Biofilm Inhibition. ACS OMEGA 2023; 8:21391-21409. [PMID: 37360468 PMCID: PMC10286099 DOI: 10.1021/acsomega.3c02239] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
Biofilm-associated infections have emerged as a significant public health challenge due to their persistent nature and increased resistance to conventional treatment methods. The indiscriminate usage of antibiotics has made us susceptible to a range of multidrug-resistant pathogens. These pathogens show reduced susceptibility to antibiotics and increased intracellular survival. However, current methods for treating biofilms, such as smart materials and targeted drug delivery systems, have not been found effective in preventing biofilm formation. To address this challenge, nanotechnology has provided innovative solutions for preventing and treating biofilm formation by clinically relevant pathogens. Recent advances in nanotechnological strategies, including metallic nanoparticles, functionalized metallic nanoparticles, dendrimers, polymeric nanoparticles, cyclodextrin-based delivery, solid lipid nanoparticles, polymer drug conjugates, and liposomes, may provide valuable technological solutions against infectious diseases. Therefore, it is imperative to conduct a comprehensive review to summarize the recent advancements and limitations of advanced nanotechnologies. The present Review encompasses a summary of infectious agents, the mechanisms that lead to biofilm formation, and the impact of pathogens on human health. In a nutshell, this Review offers a comprehensive survey of the advanced nanotechnological solutions for managing infections. A detailed presentation has been made as to how these strategies may improve biofilm control and prevent infections. The key objective of this Review is to summarize the mechanisms, applications, and prospects of advanced nanotechnologies to provide a better understanding of their impact on biofilm formation by clinically relevant pathogens.
Collapse
Affiliation(s)
- Lokender Kumar
- School
of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229, India
- Cancer
Biology Laboratory, Raj Khosla Centre for Cancer Research, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Monish Bisen
- School
of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Kusum Harjai
- Department
of Microbiology, Panjab University, Chandigarh 160014, India
| | - Sanjay Chhibber
- Department
of Microbiology, Panjab University, Chandigarh 160014, India
| | - Shavkatjon Azizov
- Laboratory
of Biological Active Macromolecular Systems, Institute of Bioorganic
Chemistry, Academy of Sciences Uzbekistan, Tashkent 100125, Uzbekistan
- Faculty
of Life Sciences, Pharmaceutical Technical
University, Tashkent 100084, Uzbekistan
| | - Hauzel Lalhlenmawia
- Department
of Pharmacy, Regional Institute of Paramedical
and Nursing Sciences, Zemabawk, Aizawl, Mizoram 796017, India
| | - Deepak Kumar
- Department
of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh173229, India
| |
Collapse
|
3
|
Biofilm in sino-nasal infectious diseases: the role nasal cytology in the diagnostic work up and therapeutic implications. Eur Arch Otorhinolaryngol 2023; 280:1523-1528. [PMID: 36376525 DOI: 10.1007/s00405-022-07748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUD Biofilm formation has been recently recognised as one of the most important etiopathological mechanisms underlying chronic rhinosinusitis (CRS) and its recalcitrance. In this context, nasal cytology (NC) has become an integral part of diagnostic work up of patients suffering from sino-nasal diseases, since it is an easy-to-apply, reproducible and non-invasive diagnostic tool that allows to assess both the nasal inflammatory infiltrate and the presence of biofilms on nasal mucosal surface, further orienting the therapeutic choices in case of infectious diseases for eradicating infections and biofilms. Nevertheless, biofilms are typically resistant to common antibiotic treatments and may trigger or maintain chronic inflammation. Hence, the importance of correctly detecting the presence of biofilm and identifying new effective treatments. PURPOSE The aim of this brief review is to better clarify the role of biofilm in the pathogenesis and recurrence of sino-nasal disorders and to highlight the role of nasal cytology (NC) in the rhino-allergologic diagnostic path and in the evaluation of the effectiveness of new treatments.
Collapse
|