1
|
Harrahill NJ, Hadden MK. Small molecules that regulate the N 6-methyladenosine RNA modification as potential anti-cancer agents. Eur J Med Chem 2024; 274:116526. [PMID: 38805939 DOI: 10.1016/j.ejmech.2024.116526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Epitranscriptomics, the field of post-translational RNA modifications, is a burgeoning domain of research that has recently received significant attention for its role in multiple diseases, including cancer. N6-methyladenosine (m6A) is the most prominent post-translational RNA modification and plays a critical role in RNA transcription, processing, translation, and metabolism. The m6A modification is controlled by three protein classes known as writers (methyltransferases), erasers (demethylases), and readers (m6A-binding proteins). Each class of m6A regulatory proteins has been implicated in cancer initiation and progression. As such, many of these proteins have been identified as potential targets for anti-cancer chemotherapeutics. In this work, we provide an overview of the role m6A-regulating proteins play in cancer and discuss the current state of small molecule therapeutics targeting these proteins.
Collapse
Affiliation(s)
- Noah J Harrahill
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Unit 3092, Storrs, CT, 06269-3092, United States
| | - M Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Unit 3092, Storrs, CT, 06269-3092, United States.
| |
Collapse
|
2
|
Li W, Deng Z, Xiao S, Du Q, Zhang M, Song H, Zhao C, Zheng L. Protective effect of vitexin against high fat-induced vascular endothelial inflammation through inhibiting trimethylamine N-oxide-mediated RNA m6A modification. Food Funct 2024; 15:6988-7002. [PMID: 38855818 DOI: 10.1039/d3fo04743a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
A high-fat diet (HFD) is a major risk factor for cardiovascular disease. However, the specific effects of a HFD on vascular inflammation and the protective role of vitexin, a bioactive compound derived from food, require further research. This study investigated the protective effects of vitexin intervention against HFD-induced vascular inflammation and its underlying mechanism. The results demonstrated that vitexin intervention significantly reduced body weight, serum total cholesterol, and low-density lipoprotein cholesterol levels in HFD-fed mice. Vitexin also improved vascular pathological changes and the inflammatory status in the mice. Furthermore, vitexin intervention reduced serum TMAO levels in HFD-fed mice by altering the gut microbiota composition. The HFD significantly increased N6-methyladenosine (m6A) levels in aorta tissues, while vitexin intervention reversed this abnormal m6A level. Through metabolite affinity responsive target fluorescence quenching and molecular docking assays, it was found that vitexin could directly bind to fat mass and obesity-associated protein (FTO), potentially promoting m6A demethylation. The dose-response relationship between TMAO and inflammation/m6A was further validated in HUVEC cells and in vivo mouse experiments. Specifically, TMAO increased m6A levels and inflammation, while vitexin inhibited TMAO-mediated m6A modification, exhibiting anti-inflammatory effects. In conclusion, this study demonstrates the protective role of vitexin against HFD-induced vascular inflammation by inhibiting TMAO-mediated RNA m6A modification, laying the foundation for the development of functional foods.
Collapse
Affiliation(s)
- Wenwen Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, Jiangxi, China
- Institute for Advanced Study, University of Nanchang, Nanchang 330031, Jiangxi, China
| | - Shuang Xiao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Qian Du
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Mengru Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Hailing Song
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Caidong Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, Jiangxi, China
| |
Collapse
|
3
|
Zhang Q, Li J, Wang C, Li Z, Luo P, Gao F, Sun W. N6-Methyladenosine in Cell-Fate Determination of BMSCs: From Mechanism to Applications. RESEARCH (WASHINGTON, D.C.) 2024; 7:0340. [PMID: 38665846 PMCID: PMC11045264 DOI: 10.34133/research.0340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/21/2024] [Indexed: 04/28/2024]
Abstract
The methylation of adenosine base at the nitrogen-6 position is referred to as "N6-methyladenosine (m6A)" and is one of the most prevalent epigenetic modifications in eukaryotic mRNA and noncoding RNA (ncRNA). Various m6A complex components known as "writers," "erasers," and "readers" are involved in the function of m6A. Numerous studies have demonstrated that m6A plays a crucial role in facilitating communication between different cell types, hence influencing the progression of diverse physiological and pathological phenomena. In recent years, a multitude of functions and molecular pathways linked to m6A have been identified in the osteogenic, adipogenic, and chondrogenic differentiation of bone mesenchymal stem cells (BMSCs). Nevertheless, a comprehensive summary of these findings has yet to be provided. In this review, we primarily examined the m6A alteration of transcripts associated with transcription factors (TFs), as well as other crucial genes and pathways that are involved in the differentiation of BMSCs. Meanwhile, the mutual interactive network between m6A modification, miRNAs, and lncRNAs was intensively elucidated. In the last section, given the beneficial effect of m6A modification in osteogenesis and chondrogenesis of BMSCs, we expounded upon the potential utility of m6A-related therapeutic interventions in the identification and management of human musculoskeletal disorders manifesting bone and cartilage destruction, such as osteoporosis, osteomyelitis, osteoarthritis, and bone defect.
Collapse
Affiliation(s)
- Qingyu Zhang
- Department of Orthopedics,
Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan 250021, China
| | - Junyou Li
- School of Mechanical Engineering,
Sungkyunkwan University, Suwon 16419, South Korea
| | - Cheng Wang
- Department of Orthopaedic Surgery,
Peking UniversityThird Hospital, Peking University, Beijing 100191, China
| | - Zhizhuo Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital,
the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Pan Luo
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Fuqiang Gao
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wei Sun
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing 100029, China
- Department of Orthopaedic Surgery of the Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Xiao P, Duan Z, Liu Z, Chen L, Zhang D, Liu L, Zhou C, Gan J, Dong Z, Yang CG. Rational Design of RNA Demethylase FTO Inhibitors with Enhanced Antileukemia Drug-Like Properties. J Med Chem 2023. [PMID: 37418628 DOI: 10.1021/acs.jmedchem.3c00543] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
The fat mass and obesity-associated protein (FTO) is an RNA N6-methyladenosine (m6A) demethylase highly expressed in diverse cancers including acute myeloid leukemia (AML). To improve antileukemia drug-like properties, we have designed 44/ZLD115, a flexible alkaline side-chain-substituted benzoic acid FTO inhibitor derived from FB23. A combination of structure-activity relationship analysis and lipophilic efficiency-guided optimization demonstrates that 44/ZLD115 exhibits better drug-likeness than the previously reported FTO inhibitors, FB23 and 13a/Dac85. Then, 44/ZLD115 shows significant antiproliferative activity in leukemic NB4 and MOLM13 cell lines. Moreover, 44/ZLD115 treatment noticeably increases m6A abundance on the AML cell RNA, upregulates RARA gene expression, and downregulates MYC gene expression in MOLM13 cells, which are consistent with FTO gene knockdown. Lastly, 44/ZLD115 exhibits antileukemic activity in xenograft mice without substantial side effects. This FTO inhibitor demonstrates promising properties that can be further developed for antileukemia applications.
Collapse
Affiliation(s)
- Pan Xiao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zongliang Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zeyu Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deyan Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Liu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chen Zhou
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianhua Gan
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Ze Dong
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cai-Guang Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Chen Z, Hu Y, Jin L, Yang F, Ding H, Zhang L, Li L, Pan T. The Emerging Role of N6-Methyladenosine RNA Methylation as Regulators in Cancer Therapy and Drug Resistance. Front Pharmacol 2022; 13:873030. [PMID: 35462896 PMCID: PMC9022635 DOI: 10.3389/fphar.2022.873030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/14/2022] [Indexed: 12/18/2022] Open
Abstract
N6-methyladenosine (m6A) RNA methylation has been considered the most prevalent, abundant, and conserved internal transcriptional modification throughout the eukaryotic mRNAs. Typically, m6A RNA methylation is catalyzed by the RNA methyltransferases (writers), is removed by its demethylases (erasers), and interacts with m6A-binding proteins (readers). Accumulating evidence shows that abnormal changes in the m6A levels of these regulators are increasingly associated with human tumorigenesis and drug resistance. However, the molecular mechanisms underlying m6A RNA methylation in tumor occurrence and development have not been comprehensively clarified. We reviewed the recent findings on biological regulation of m6A RNA methylation and summarized its potential therapeutic strategies in various human cancers.
Collapse
Affiliation(s)
- Zhaolin Chen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China
| | - Ying Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Le Jin
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China
| | - Fan Yang
- Department of Clinical Medical, The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Haiwen Ding
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China
| | - Lei Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China
| | - Lili Li
- Department of Hematopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tingting Pan
- Department of General Surgery, Diagnosis and Therapy Center of Thyroid and Breast, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China
| |
Collapse
|