1
|
Zhang DQ, Dong X, Su S, Zhang L, Zhang J, Yang W, Hu W, Li L, Song Y, Xie X, Li Q, Wang R, Zhang Y. Temporin-GHaR Peptide Alleviates LPS-Induced Cognitive Impairment and Microglial Activation by Modulating Endoplasmic Reticulum Stress. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10277-5. [PMID: 38733463 DOI: 10.1007/s12602-024-10277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
Neuroinflammation is considered an important factor that leads to cognitive impairment. Microglia play a crucial role in neuroinflammation, which leads to cognitive impairment. This study aimed at determining whether temporin-GHaR peptide (GHaR) could improve cognitive function and at uncovering the underlying mechanisms. We found that GHaR treatment alleviated LPS-induced cognitive impairment and inhibited activation of microglia in LPS-induced mice. Furthermore, GHaR inhibited activation of endoplasmic reticulum stress (ERS) and the NF-κB signaling pathway in LPS-induced mice. In vitro, GHaR inhibited M1 polarization of BV2 cells and suppressed TNF-α and IL-6 secretion. Additionally, GHaR neuronal cell viability and apoptosis were induced by LPS-activated microglia-conditioned medium. Moreover, in LPS-induced BV2 cells, GHaR inhibited activation of ERS and the NF-κB signaling pathway. In summary, GHaR improved LPS-induced cognitive and attenuated inflammatory responses via microglial activation reversal. In conclusion, the neuroprotective effects of GHaR were mediated via the ERS signaling pathway.
Collapse
Affiliation(s)
- Da-Qi Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
- Department of Neurology, the First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
- Key Laboratory of Brain Science Research &Transformation in Tropical Environment of Hainan Province, Haikou, 571199, China
| | - Xiaoqian Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
| | - Simin Su
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
| | - Linlin Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
| | - Jiayu Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
| | - Wenjing Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
| | - Wenting Hu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
| | - Lushuang Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
| | - Yanting Song
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
| | - Xi Xie
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
| | - Qifu Li
- Department of Neurology, the First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
- Key Laboratory of Brain Science Research &Transformation in Tropical Environment of Hainan Province, Haikou, 571199, China
| | - Rong Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China.
| | - Yingxia Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China.
| |
Collapse
|
2
|
Sarkar T, Ghosh S, Sundaravadivelu PK, Pandit G, Debnath S, Thummer RP, Satpati P, Chatterjee S. Mechanism of Protease Resistance of D-Amino Acid Residue Containing Cationic Antimicrobial Heptapeptides. ACS Infect Dis 2024; 10:562-581. [PMID: 38294842 DOI: 10.1021/acsinfecdis.3c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Antimicrobial peptides (AMPs) have been an alternate promising class of therapeutics in combating global antibiotic resistance threat. However, the short half-life of AMPs, owing to protease degradability, is one of the major bottlenecks in its commercial success. In this study, we have developed all-D-amino acid containing small cationic peptides P4C and P5C, which are completely protease-resistant, noncytotoxic, nonhemolytic, and potent against the ESKAPE pathogens in comparison to their L analogues. MD simulations suggested marginal improvement in the peptide-binding affinity to the membrane-mimetic SDS micelle (∼ 1 kcal/mol) in response to L → D conversion, corroborating the marginal improvement in the antimicrobial activity. However, L → D chirality conversion severely compromised the peptide:protease (trypsin) binding affinity (≥10 kcal/mol). The relative distance between the scissile peptide carbonyl and the catalytic triad of the protease (H57, D102, and S195) was found to be significantly altered in the D-peptide:protease complex (inactive conformation) relative to the active L-peptide:protease complex. Thus, the poor binding affinity between D-peptides and the protease, resulting in the inactive complex formation, explained their experimentally observed proteolytic stability. This mechanistic insight might be extended to the proteolytic stability of the D-peptides in general and stimulate the rational design of protease-resistant AMPs.
Collapse
Affiliation(s)
- Tanumoy Sarkar
- Department of Chemistry, Indian Institute of Technology, Guwahati, Guwahati, Assam 781039, India
| | - Suvankar Ghosh
- Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Guwahati, Assam 781039, India
| | | | - Gopal Pandit
- Department of Chemistry, Indian Institute of Technology, Guwahati, Guwahati, Assam 781039, India
| | - Swapna Debnath
- Department of Chemistry, Indian Institute of Technology, Guwahati, Guwahati, Assam 781039, India
| | - Rajkumar P Thummer
- Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Guwahati, Assam 781039, India
| | - Priyadarshi Satpati
- Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Guwahati, Assam 781039, India
| | - Sunanda Chatterjee
- Department of Chemistry, Indian Institute of Technology, Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
3
|
Chakraborty S, Katsifis G, Roohani I, Boyer C, McKenzie D, Willcox MDP, Chen R, Kumar N. Electrostatic and Covalent Binding of an Antibacterial Polymer to Hydroxyapatite for Protection against Escherichia coli Colonization. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5045. [PMID: 37512322 PMCID: PMC10385198 DOI: 10.3390/ma16145045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
Orthopedic-device-related infections are notorious for causing physical and psychological trauma to patients suffering from them. Traditional methods of treating these infections have relied heavily on antibiotics and are becoming ineffectual due to the rise of antibiotic-resistant bacteria. Mimics of antimicrobial peptides have emerged as exciting alternatives due to their favorable antibacterial properties and lack of propensity for generating resistant bacteria. In this study, the efficacy of an antibacterial polymer as a coating material for hydroxyapatite and glass surfaces, two materials with wide ranging application in orthopedics and the biomedical sciences, is demonstrated. Both physical and covalent modes of attachment of the polymer to these materials were explored. Polymer attachment to the material surfaces was confirmed via X-ray photoelectron spectroscopy and contact angle measurements. The modified surfaces exhibited significant antibacterial activity against the Gram-negative bacterium E. coli, and the activity was retained for a prolonged period on the surfaces of the covalently modified materials.
Collapse
Affiliation(s)
| | - Georgio Katsifis
- School of Physics, University of Sydney, Sydney, NSW 2006, Australia
| | - Iman Roohani
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - David McKenzie
- School of Physics, University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
| | - Mark D P Willcox
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Renxun Chen
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Naresh Kumar
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Lima WG, de Lima ME. Therapeutic Prospection of Animal Venoms-Derived Antimicrobial Peptides against Infections by Multidrug-Resistant Acinetobacter baumannii: A Systematic Review of Pre-Clinical Studies. Toxins (Basel) 2023; 15:toxins15040268. [PMID: 37104206 PMCID: PMC10143903 DOI: 10.3390/toxins15040268] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
Infections caused by multidrug-resistant Acinetobacter baumannii (MDR-Ab) have become a public health emergency. Due to the small therapeutic arsenal available to treat these infections, health agencies have highlighted the importance of developing new antimicrobials against MDR-Ab. In this context, antimicrobial peptides (AMPs) stand out, and animal venoms are a rich source of these compounds. Here, we aimed to summarize the current knowledge on the use of animal venom-derived AMPs in the treatment of MDR-Ab infections in vivo. A systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The eight studies included in this review identified the antibacterial activity of eleven different AMPs against MDR-Ab. Most of the studied AMPs originated from arthropod venoms. In addition, all AMPs are positively charged and rich in lysine residues. In vivo assays showed that the use of these compounds reduces MDR-Ab-induced lethality and bacterial load in invasive (bacteremia and pneumonia) and superficial (wounds) infection models. Moreover, animal venom-derived AMPs have pleiotropic effects, such as pro-healing, anti-inflammatory, and antioxidant activities, that help treat infections. Animal venom-derived AMPs are a potential source of prototype molecules for the development of new therapeutic agents against MDR-Ab.
Collapse
Affiliation(s)
- William Gustavo Lima
- Programa de Pós Graduação em Medicina-Biomedicina, Faculdade Santa Casa de Belo Horizonte, Belo Horizonte 30150-250, MG, Brazil
| | - Maria Elena de Lima
- Programa de Pós Graduação em Medicina-Biomedicina, Faculdade Santa Casa de Belo Horizonte, Belo Horizonte 30150-250, MG, Brazil
| |
Collapse
|
5
|
Zeng Z, Zhu J, Deng X, Chen H, Jin Y, Miclet E, Alezra V, Wan Y. Customized Reversible Stapling for Selective Delivery of Bioactive Peptides. J Am Chem Soc 2022; 144:23614-23621. [PMID: 36530144 DOI: 10.1021/jacs.2c10949] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We have developed a new concept for reversible peptide stapling that involves macrocyclization between two amino groups and decyclization promoted via dual 1,4-elimination. Depending on the trigger moiety, this strategy could be employed to selectively deliver peptides to either intracellular or extracellular targets. As a proof of concept, a peptide inhibitor targeting a lysine-specific demethylase 1 (LSD1) was temporarily cyclized to enhance its stability and ability to cross the cell membrane. Once inside the cells, the biologically active linear peptide was released under reducing environment. Moreover, we have developed reversibly stapled peptides using antimicrobial peptides (RStAMPs) whose bioactive helical conformation can be temporarily destabilized by stapling the peptide backbone. The resulting helix-distorted RStAMPs are nontoxic and highly resistant to protease hydrolysis, while at the infection site, RStAMPs can be rapidly activated by the overproduced H2O2 through the dual 1,4-elimination. The latter restored the helical structure of the native peptide and its antimicrobial activity. This work illustrates a highly valuable macrocyclization strategy for the peptide community and should greatly benefit the field of peptide delivery.
Collapse
Affiliation(s)
- Zizhen Zeng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| | - Jibao Zhu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| | - Xiaoyu Deng
- Minist Educ, Key Lab Modern Preparat TCM, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| | - Huanwen Chen
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| | - Emeric Miclet
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, 4 Place Jussieu, Cedex 05, Paris 75252, France
| | - Valérie Alezra
- Laboratoire de Méthodologie, Synthèse et Molécules Thérapeutiques, ICMMO, Université Paris-Saclay, Paris 91400, Orsay, France
| | - Yang Wan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| |
Collapse
|
6
|
Yang R, Hou E, Cheng W, Yan X, Zhang T, Li S, Yao H, Liu J, Guo Y. Membrane-Targeting Neolignan-Antimicrobial Peptide Mimic Conjugates to Combat Methicillin-Resistant Staphylococcus aureus (MRSA) Infections. J Med Chem 2022; 65:16879-16892. [PMID: 36512751 DOI: 10.1021/acs.jmedchem.2c01674] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) continue to endanger public health. Here, we report the synthesis of neolignan isomagnolone (I) and its isomer II, and the preparation of a series of novel neolignan-antimicrobial peptide (AMP) mimic conjugates. Notably, conjugates III5 and III15 exhibit potent anti-MRSA activity in vitro and in vivo, comparable to that of vancomycin, a current effective treatment for MRSA. Moreover, III5 and III15 display not only fast-killing kinetics and low resistance frequency but also low toxicity as well as effects on bacterial biofilms. Mechanism studies reveal that III5 and III15 exhibit rapid bactericidal effects through binding to the phosphatidylglycerol (PG) and cardiolipin (CL) of the bacterial membrane, thereby disrupting the cell membranes and allowing increased reactive oxygen species (ROS) as well as protein and DNA leakage. The results indicate that these neolignan-AMP mimic conjugates could be promising antimicrobial candidates for combating MRSA infections.
Collapse
Affiliation(s)
- Ruige Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Enhua Hou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Wanqing Cheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xiaoting Yan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Tingting Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shihong Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Hong Yao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Jifeng Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yong Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| |
Collapse
|