1
|
Ma X, Lin Y, Zhang L, Huang Z, Zhang Y, Fu X, Li P. The dual missions of FoxO3a in inflammatory diseases: Regulation of antioxidant enzymes and involvement in programmed cell death. Int Immunopharmacol 2025; 151:114369. [PMID: 40031428 DOI: 10.1016/j.intimp.2025.114369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/22/2025] [Accepted: 02/23/2025] [Indexed: 03/05/2025]
Abstract
The transcription factor FoxO3a plays a crucial role in the process of cells adapting to various stress conditions. Multiple post - translational modifications and epigenetic mechanisms work together to precisely regulate the activity of FoxO3a, influencing its subcellular localization, stability, interactions with other proteins, DNA - binding affinity, and transcriptional regulatory capacity. Under different chemical signal stimuli and subcellular environments, the activation of FoxO3a triggered by oxidative stress can initiate diverse transcriptional programs, which are essential for the body to resist oxidative damage. In the development and progression of inflammatory diseases, FoxO3a exerts an important function by regulating the expression levels of antioxidant enzymes and participating in key physiological processes such as programmed cell death. This article comprehensively reviews the structural characteristics, mechanism of action of FoxO3a, as well as its functions in regulating antioxidant enzymes and programmed cell death. The aim is to deeply explore the potential of FoxO3a as a potential therapeutic target for preventing and treating damages such as inflammatory diseases caused by cellular stress.
Collapse
Affiliation(s)
- Xiangli Ma
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Yujie Lin
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Ling Zhang
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhenzhen Huang
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Yurong Zhang
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Xu Fu
- Key Laboratory of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Peiwu Li
- Department of Emergency Medicine, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
2
|
Wu Z, Zhan W, Wu L, Yu L, Xie X, Yu F, Kong W, Bi S, Liu S, Yin G, Zhou J. The Roles of Forkhead Box O3a (FOXO3a) in Bone and Cartilage Diseases - A Narrative Review. Drug Des Devel Ther 2025; 19:1357-1375. [PMID: 40034405 PMCID: PMC11874768 DOI: 10.2147/dddt.s494841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025] Open
Abstract
Bone and cartilage diseases are significantly associated with musculoskeletal disability. However, no effective drugs are available to cure them. FOXO3a, a member of the FOXO family, has been implicated in cell proliferation, ROS detoxification, autophagy, and apoptosis. The biological functions of FOXO3a can be modulated by post-translational modifications (PTMs), such as phosphorylation and acetylation. Several signaling pathways, such as MAPK, NF-κB, PI3K/AKT, and AMPK/Sirt1 pathways, have been implicated in the development of bone and cartilage diseases by mediating the expression of FOXO3a. In particular, FOXO3a acts as a transcriptional factor in mediating the expression of various genes, such as MnSOD, CAT, BIM, BBC3, and CDK6. FOXO3a plays a critical role in the metabolism of bone and cartilage. In this article, we mainly discussed the biological functions of FOXO3a in bone and cartilage diseases, such as osteoporosis (OP), osteoarthritis (OA), rheumatoid arthritis (RA), ankylosing spondylitis (AS), and intervertebral disc degeneration (IDD). FOXO3a can promote osteogenic differentiation, induce osteoblast proliferation, inhibit osteoclast activity, suppress chondrocyte apoptosis, and reduce inflammatory responses. Collectively, up-regulation of FOXO3a expression shows beneficial effects, and FOXO3a has become a potential target for bone and cartilage diseases.
Collapse
Affiliation(s)
- Zhenyu Wu
- Department of Medical Imaging, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
- First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Wang Zhan
- First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Longhuo Wu
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Luhu Yu
- Department of Clinical Laboratory, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Xunlu Xie
- Department of Pathology, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Fang Yu
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Weihao Kong
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Shengrong Bi
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Shiwei Liu
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Guoqiang Yin
- Department of Joint Surgery, Ganzhou Hospital Affiliated to Nanchang University, Ganzhou, 341000, People’s Republic of China
| | - Jianguo Zhou
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| |
Collapse
|
3
|
Yang W, Xiao W, Liu H. Genetically predicted circulating linoleic acid levels and risk of osteoarthritis: a two-sample mendelian randomization study. BMC Musculoskelet Disord 2024; 25:903. [PMID: 39563274 DOI: 10.1186/s12891-024-08018-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/02/2024] [Indexed: 11/21/2024] Open
Abstract
OBJECTIVES This study aimed to provide insight into the effect of genetically predicted linoleic acid (LA) levels on osteoarthritis (OA). METHODS The LA dataset was obtained from the UK Biobank (UKBB) consortium and contained 114,999 samples. The OA discovery dataset was derived from MRC-IEU consortium and included 38,472 cases and 424,461 controls. The OA validation set was derived from a summary-level genome-wide association study (GWAS) and included 39,427 cases and 378,169 controls. Genetic variants strongly associated with LA (p < 5 × 10- 8) were extracted as instrumental variables (IVs). The inverse variance weighted (IVW) approach was adopted as the primary analysis method in this study. In addition, multiple sensitivity analysis methods were used to assess the reliability of our results. RESULTS The IVW approach showed that circulating LA levels were negatively associated with OA risk in the discovery set (odds ratio (OR) = 0.993, 95% confidence interval (95% CI): 0.988-0.998, p = 0.011). A consistent result was obtained in the validation set (OR = 0.904, 95%CI: 0.845-0.967, p = 0.003). These results were validated by sensitivity analysis. CONCLUSION This study provides new evidence for the causal relationship between LA and OA, which provides new insights for the treatment of OA.
Collapse
Affiliation(s)
- Wen Yang
- Department of Rehabilitation Medicine, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443001, Hubei, China.
| | - Wenwu Xiao
- Department of Rehabilitation Medicine, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443001, Hubei, China
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Sun Yat- sen University, Guangzhou, 510080, Guangdong, China
| | - Hailong Liu
- Department of Joint Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
4
|
Huang J, Ren Q, Jiao L, Niu S, Liu C, Zhou J, Wu L, Yang Y. TMF suppresses chondrocyte hypertrophy in osteoarthritic cartilage by mediating the FOXO3a/BMPER pathway. Exp Ther Med 2024; 28:283. [PMID: 38800044 PMCID: PMC11117099 DOI: 10.3892/etm.2024.12571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Osteoarthritis (OA) is a disease of the joints, characterized by chronic inflammation, cartilage destruction and extracellular matrix (ECM) remodeling. Aberrant chondrocyte hypertrophy promotes cartilage destruction and OA development. Collagen X, the biomarker of chondrocyte hypertrophy, is upregulated by runt-related transcription factor 2 (Runx2), which is mediated by the bone morphogenetic protein 4 (BMP4)/Smad1 signaling pathway. BMP binding endothelial regulator (BMPER), a secreted glycoprotein, acts as an agonist of BMP4. 5,7,3',4'-tetramethoxyflavone (TMF) is a natural flavonoid derived from Murraya exotica L. Results of our previous study demonstrated that TMF exhibits chondroprotective effects against OA development through the activation of Forkhead box protein O3a (FOXO3a) expression. However, whether TMF suppresses chondrocyte hypertrophy through activation of FOXO3a expression and inhibition of BMPER/BMP4/Smad1 signaling remains unknown. Results of the present study revealed that TMF inhibited collagen X and Runx2 expression, inhibited BMPER/BMP4/Smad1 signaling, and activated FOXO3a expression; thus, protecting against chondrocyte hypertrophy and OA development. However, BMPER overexpression and FOXO3a knockdown impacted the protective effects of TMF. Thus, TMF inhibited chondrocyte hypertrophy in OA cartilage through mediating the FOXO3a/BMPER signaling pathway.
Collapse
Affiliation(s)
- Jishang Huang
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Qun Ren
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Linhui Jiao
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Shuo Niu
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Chenghong Liu
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Juan Zhou
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Longhuo Wu
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Yadong Yang
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
5
|
Cheng WC, Chen PY, Zhang X, Chang YK, Tan KT, Lin TCC. 5,7,3',4'-Tetramethoxyflavone suppresses TGF-β1-induced activation of murine fibroblasts in vitro and ameliorates bleomycin-induced pulmonary fibrosis in mice. Immunopharmacol Immunotoxicol 2024:1-13. [PMID: 38951964 DOI: 10.1080/08923973.2024.2371150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 06/14/2024] [Indexed: 07/03/2024]
Abstract
OBJECTIVE This study aimed to investigate the use of 5,7,3',4'-tetramethoxyflavone (TMF) to treat pulmonary fibrosis (PF), a chronic and fatal lung disease. In vitro and in vivo models were used to examine the impact of TMF on PF. METHODS NIH-3T3 (Mouse Embryonic Fibroblast) were exposed to transforming growth factor‑β1 (TGF-β1) and treated with or without TMF. Cell growth was assessed using the MTT method, and cell migration was evaluated with the scratch wound assay. Protein and messenger ribonucleic acid (mRNA) levels of extracellular matrix (ECM) genes were analyzed by western blotting and quantitative reverse transcription-polymerase chain reaction (RT-PCR), respectively. Downstream molecules affected by TGF-β1 were examined by western blotting. In vivo, mice with bleomycin-induced PF were treated with TMF, and lung tissues were analyzed with staining techniques. RESULTS The in vitro results showed that TMF had no significant impact on cell growth or migration. However, it effectively inhibited myofibroblast activation and ECM production induced by TGF-β1 in NIH-3T3 cells. This inhibition was achieved by suppressing various signaling pathways, including Smad, mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase/AKT (PI3K/AKT), and WNT/β-catenin. The in vivo experiments demonstrated the therapeutic potential of TMF in reducing PF induced by bleomycin in mice, and there was no significant liver or kidney toxicity observed. CONCLUSION These findings suggest that TMF has the potential to effectively inhibit myofibroblast activation and could be a promising treatment for PF. TMF achieves this inhibitory effect by targeting TGF-β1/Smad and non-Smad pathways.
Collapse
Affiliation(s)
- Wen-Chien Cheng
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Translational Medicine Research Center, National Chung Hsing University, Taichung, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Pei Ying Chen
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Translational Medicine Research Center, National Chung Hsing University, Taichung, Taiwan
| | - Xiang Zhang
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Yu-Kang Chang
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
- Department of Postbaccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Kok-Tong Tan
- Department of Surgery, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan
- College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Tim C C Lin
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
6
|
Wang Z, Shi W, Wu L, Xiao Y, Wang M, Zhang S, Chen Z, Yin G, Xie X, Bi S, Liu S, Kong W, Zhou J. TMF inhibits extracellular matrix degradation by regulating the C/EBPβ/ADAMTS5 signaling pathway in osteoarthritis. Biomed Pharmacother 2024; 174:116501. [PMID: 38554527 DOI: 10.1016/j.biopha.2024.116501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/01/2024] Open
Abstract
Osteoarthritis (OA) is a chronic joint disease, characterized by degenerative destruction of articular cartilage. Chondrocytes, the unique cell type in cartilage, mediate the metabolism of extracellular matrix (ECM), which is mainly constituted by aggrecan and type II collagen. A disintegrin and metalloproteinase with thrombospondin 5 (ADAMTS5) is an aggrecanase responsible for the degradation of aggrecan in OA cartilage. CCAAT/enhancer binding protein β (C/EBPβ), a transcription factor in the C/EBP family, has been reported to mediate the expression of ADAMTS5. Our previous study showed that 5,7,3',4'-tetramethoxyflavone (TMF) could activate the Sirt1/FOXO3a signaling in OA chondrocytes. However, whether TMF protected against ECM degradation by down-regulating C/EBPβ expression was unknown. In this study, we found that aggrecan expression was down-regulated, and ADAMTS5 expression was up-regulated. Knockdown of C/EBPβ could up-regulate aggrecan expression and down-regulate ADAMTS5 expression in IL-1β-treated C28/I2 cells. TMF could compromise the effects of C/EBPβ on OA chondrocytes by activating the Sirt1/FOXO3a signaling. Conclusively, TMF exhibited protective activity against ECM degradation by mediating the Sirt1/FOXO3a/C/EBPβ pathway in OA chondrocytes.
Collapse
Affiliation(s)
- Zeyu Wang
- College of Rehabilitation, Gannan Medical University, Ganzhou 341000, China
| | - Weimei Shi
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Longhuo Wu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Yaosheng Xiao
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Miaofei Wang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Sainan Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Zhixi Chen
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Guoqiang Yin
- Ganzhou Hospital Affiliated to Nanchang University, Ganzhou 341000, China
| | - Xunlu Xie
- Department of Pathology, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Shengrong Bi
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Shiwei Liu
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Weihao Kong
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Jianguo Zhou
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China.
| |
Collapse
|
7
|
Jan KC, Gavahian M. Hydroxylated Tetramethoxyflavone Affects Intestinal Cell Permeability and Inhibits Cytochrome P450 Enzymes. Molecules 2024; 29:322. [PMID: 38257234 PMCID: PMC10820070 DOI: 10.3390/molecules29020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Tetramethoxyflavones (TMFs) found in the Citrus genus have garnered considerable interest from food scientists and the health food industry because of their promising biological properties. Nonetheless, there are currently limited data available regarding the effectiveness and bioavailability of "hydroxylated TMFs", which are flavones known for their potential in disease prevention through dietary means. This study aims to provide insights into the chemical and biological properties of hydroxylated TMF and evaluates its effects on intestinal cell permeability and cytochrome P450 (CYP) inhibition. Liquid chromatography-mass spectrometry (LC-MS) and microsomes analyze the TMFs and hydroxylated TMFs, elucidating cell penetration and metabolic inhibition potential. 3H7-TMF shows the fastest (1-h) transport efficiency in intestinal cells. The Caco-2 cell model exhibits significant transport and absorption efficiency. Dissolved hydroxyl-TMF with hydrophilicity possibly permeates the gut. 3H7-TMF has higher transport efficiency (46%) 3H6-TMF (39%). IC50 values of TMFs (78-TMF, 57-TMF, 3H7-TMF, 3H6-TMF) against CYP enzymes (CYP1A2, CYP2D6, CYP2C9, CYP2C19, CYP3A4) range from 0.15 to 108 μM, indicating potent inhibition. Hydroxyl groups enhance TMF hydrophilicity and membrane permeability. TMFs display varied inhibitory effects due to hydroxyl and methoxy hindrance. This study underscores the strong CYP inhibitory capabilities in these TMFs, implying potential food-drug interactions if used in medicines or supplements. These findings can also help with food nutrition improvement and pharma food developments through innovative approaches for Citrus waste valorization.
Collapse
Affiliation(s)
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, No. 1, Xuefu Rd, Neipu, Pingtung 91201, Taiwan;
| |
Collapse
|