1
|
Zhang D, Xu D, Huang X, Wei Y, Tang F, Qin X, Liang W, Liang Z, Jin L, Wang H, Wang H. Puerarin-Loaded Electrospun Patches with Anti-Inflammatory and Pro-Collagen Synthesis Properties for Pelvic Floor Reconstruction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308590. [PMID: 38509840 DOI: 10.1002/advs.202308590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/02/2024] [Indexed: 03/22/2024]
Abstract
Pelvic organ prolapse (POP) is one of the most common pelvic floor dysfunction disorders worldwide. The weakening of pelvic connective tissues initiated by excessive collagen degradation is a leading cause of POP. However, the patches currently used in the clinic trigger an unfavorable inflammatory response, which often leads to implantation failure and the inability to simultaneously reverse progressive collagen degradation. Therefore, to overcome the present challenges, a new strategy is applied by introducing puerarin (Pue) into poly(l-lactic acid) (PLLA) using electrospinning technology. PLLA improves the mechanical properties of the patch, while Pue offers intrinsic anti-inflammatory and pro-collagen synthesis effects. The results show that Pue is released from PLLA@Pue in a sustained manner for more than 20 days, with a total release rate exceeding 80%. The PLLA@Pue electrospun patches also show good biocompatibility and low cytotoxicity. The excellent anti-inflammatory and pro-collagen synthesis properties of the PLLA@Pue patch are demonstrated both in vitro in H2O2-stimulated mouse fibroblasts and in vivo in rat abdominal wall muscle defects. Therefore, it is believed that this multifunctional electrospun patch integrating anti-inflammatory and pro-collagen synthesis properties can overcome the limitations of traditional patches and has great prospects for efficient pelvic floor reconstruction.
Collapse
Affiliation(s)
- Di Zhang
- Department of General Surgery (Colorectal Surgery), Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Dong Xu
- Department of General Surgery (Colorectal Surgery), Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Xiaobo Huang
- Department of Ophthalmology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Yingqi Wei
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Fuxin Tang
- Department of General Surgery (Colorectal Surgery), Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Xiusen Qin
- Department of General Surgery (Colorectal Surgery), Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Weiwen Liang
- Department of General Surgery (Colorectal Surgery), Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Zhongping Liang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, China
| | - Lin Jin
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou, 466001, China
| | - Hui Wang
- Department of General Surgery (Colorectal Surgery), Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Huaiming Wang
- Department of General Surgery (Colorectal Surgery), Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| |
Collapse
|
2
|
Chen HB, Li W, Yang Z, Liu KL, Lu BS, Wang ZY. ERK/MAPK Signalling Pathway Regulates MMP2 through ETS1 in Renal Clear Cell Carcinoma. Curr Mol Med 2024; 24:780-789. [PMID: 37254537 DOI: 10.2174/1566524023666230529143837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND The c-ETS-1 (ETS1) expression is high in clear cell renal cell carcinoma (ccRCC) tissues; however, how it impacts ccRCC is currently unknown. METHODS The online STRING web source was used to construct a protein network interacting with ETS1. The Cell Counting Kit-8 was used to detect the cell viability. A clonogenic assay, a wound-healing assay, and a Transwell assay were used to detect cell proliferation, invasion and migration abilities. Western blot was used to detect the expression of proteins. RESULTS The data showed the expression of ETS1 in ccRCC tissues to be significantly increased compared to adjacent tissues (p<0.05). The positive expression of ETS1 in ccRCC patients aged 20-100 was statistically significant compared to adjacent normal tissues (p<0.05). The grade of ETS1 positive expression (1-4) and lymph node metastasis (N1) in ccRCC were significantly higher than those in adjacent normal tissues (p<0.05). The tumour stage (stages 1-4) in ccRCC patients with positive ETS1 expression was significantly higher than that in adjacent normal tissues (p<0.05). Knockdown of ETS1 and PERK inhibitors significantly inhibited the proliferation, migration and invasion of ccRCC cells. Knockdown of ETS1 inhibited MMP-2 expression, and an extracellular signal-related kinase (ERK) inhibitor inhibited both ETS1 and MMP-2 expression. CONCLUSION A high expression of ETS1 is associated with the progression of ccRCC. This study suggests that ETS1 promotes proliferation by increasing MMP2 expression in ccRCC, and combined knockdown of ETS1 and inhibition of ERK can significantly inhibit the proliferation, migration and invasion of ccRCC. ETS1 may be a therapeutic and prognostic target for renal cell carcinoma.
Collapse
Affiliation(s)
- Hai-Bin Chen
- Department of Urology, the Second Hospital of Hebei Medical University, Shijiazhuang, 050061, China
- Department of Urology, Affiliated Hospital of Hebei Engineering University, Handan, 056000, China
| | - Wei Li
- Department of Urology, the Second Hospital of Hebei Medical University, Shijiazhuang, 050061, China
| | - Zhan Yang
- Department of Urology, the Second Hospital of Hebei Medical University, Shijiazhuang, 050061, China
| | - Kai-Long Liu
- Department of Urology, the Second Hospital of Hebei Medical University, Shijiazhuang, 050061, China
| | - Bao-Sai Lu
- Department of Urology, the Second Hospital of Hebei Medical University, Shijiazhuang, 050061, China
| | - Zi-Yi Wang
- Department of Urology, the Second Hospital of Hebei Medical University, Shijiazhuang, 050061, China
| |
Collapse
|
3
|
Zhong J, Pan R, Gao M, Mo Y, Peng X, Liang G, Chen Z, Du J, Huang Z. Identification and validation of a T cell marker gene-based signature to predict prognosis and immunotherapy response in gastric cancer. Sci Rep 2023; 13:21357. [PMID: 38049463 PMCID: PMC10696024 DOI: 10.1038/s41598-023-48930-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023] Open
Abstract
Although the role of T cells in tumor immunity and modulation of the tumor microenvironment (TME) has been extensively studied, their precise involvement in gastric adenocarcinoma remains inadequately explored. In this work, we analyzed the single-cell RNA sequencing data set in GSE183904 and identified 322 T cell marker genes using the "FindAllMarkers" method of the R package "Seurat". STAD patients in the TCGA database were divided into high-risk and low-risk categories based on risk scores. The five-gene prediction signature based on T cell marker genes can predict the prognosis of gastric cancer patients with high accuracy. In the training cohort, the areas under the receiver operating characteristic (ROC) curve were 0.667, 0.73, and 0.818 at 1, 3, and 5 years. External validation of the predictive signature was also performed using multiple clinical subgroups and GEO cohorts. To help with practical application, a diagnostic model was created that shows values of 0.732, 0.752, and 0.816 for the relevant areas under the ROC curve at 1, 3, and 5 years. The T cell marker genes identified in this study may serve as potential therapeutic targets, and the developed predictive signatures and nomograms may aid in the clinical management of gastric cancer.
Collapse
Affiliation(s)
- Jinlin Zhong
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Rongling Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Miao Gao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Yuqian Mo
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Xin Peng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Guoxiao Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Zixuan Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Jinlin Du
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Zhigang Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China.
- Key Laboratory of Noncommunicable Diseases Control and Health Data Statistics of Guangdong Medical University, Dongguan, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Chang X, Tan Q, Xu J, Wu X, Wang Y, Zhang Y, Zhang H, Liu H, Yan L. Tumor-derived exosomal linc00881 induces lung fibroblast activation and promotes osteosarcoma lung migration. Cancer Cell Int 2023; 23:287. [PMID: 37990331 PMCID: PMC10664679 DOI: 10.1186/s12935-023-03121-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023] Open
Abstract
Osteosarcoma (OS) commonly metastasizes to the lung, yet the underlying molecular mechanisms remain poorly understood. Exosomes play a crucial role in tumor migration, including OS lung migration. However, the underlying mechanism by which exosome-derived long non-coding RNAs (lncRNAs) contribute to lung migration in osteosarcoma (OS) remains unclear. This study presents a newly discovered lncRNA, linc00881, derived from OS exosomes. Our study shows that linc00881 promotes the migration of OS cells to the lung and induces the conversion of normal lung fibroblasts into cancer-associated fibroblasts (CAFs). Subsequently, we found that exosomal linc00881 secreted by OS cells can regulate the expression of matrix metalloproteinase 2 (MMP2) in HFL-1 cells by sponging miR-29c-3p, thereby activating the NF-κB signaling in lung fibroblasts. Finally, we discovered that pro-inflammatory cytokines, namely IL-1β, IL-6, and IL-8, were secreted through the linc00881/miR-29c-3p/MMP2 axis. These results suggest that OS-derived exosomes can mediate the intercellular crosstalk between OS cells and lung fibroblasts, ultimately impacting OS lung migration. Our study provides a potential target for the treatment of OS lung migration.
Collapse
Affiliation(s)
- Xinyu Chang
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241002, Anhui, China
- Department of Orthopedics Trauma, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Qiuyu Tan
- Provincial Key Laboratory of Biological Macro-Molecules Research, WanNan Medical College, Wuhu, 241002, Anhui, China
| | - Jinwen Xu
- Provincial Key Laboratory of Biological Macro-Molecules Research, WanNan Medical College, Wuhu, 241002, Anhui, China
| | - Xu Wu
- Provincial Key Laboratory of Biological Macro-Molecules Research, WanNan Medical College, Wuhu, 241002, Anhui, China
| | - Ying Wang
- Provincial Key Laboratory of Biological Macro-Molecules Research, WanNan Medical College, Wuhu, 241002, Anhui, China
| | - Yuan Zhang
- Provincial Key Laboratory of Biological Macro-Molecules Research, WanNan Medical College, Wuhu, 241002, Anhui, China
| | - Hao Zhang
- Department of Orthopedics Trauma, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| | - Haijun Liu
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241002, Anhui, China.
| | - Liang Yan
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241002, Anhui, China.
- Provincial Key Laboratory of Biological Macro-Molecules Research, WanNan Medical College, Wuhu, 241002, Anhui, China.
| |
Collapse
|
5
|
Almutairi S, Kalloush HM, Manoon NA, Bardaweel SK. Matrix Metalloproteinases Inhibitors in Cancer Treatment: An Updated Review (2013-2023). Molecules 2023; 28:5567. [PMID: 37513440 PMCID: PMC10384300 DOI: 10.3390/molecules28145567] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are identifiable members of proteolytic enzymes that can degrade a wide range of proteins in the extracellular matrix (ECM). MMPs can be categorized into six groups based on their substrate specificity and structural differences: collagenases, gelatinases, stromelysins, matrilysins, metalloelastase, and membrane-type MMPs. MMPs have been linked to a wide variety of biological processes, such as cell transformation and carcinogenesis. Over time, MMPs have been evaluated for their role in cancer progression, migration, and metastasis. Accordingly, various MMPs have become attractive therapeutic targets for anticancer drug development. The first generations of broad-spectrum MMP inhibitors displayed effective inhibitory activities but failed in clinical trials due to poor selectivity. Thanks to the evolution of X-ray crystallography, NMR analysis, and homology modeling studies, it has been possible to characterize the active sites of various MMPs and, consequently, to develop more selective, second-generation MMP inhibitors. In this review, we summarize the computational and synthesis approaches used in the development of MMP inhibitors and their evaluation as potential anticancer agents.
Collapse
Affiliation(s)
- Shriefa Almutairi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| | - Hanin Moh'd Kalloush
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Nour A Manoon
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
6
|
Takeuchi T, Nomura Y, Tamita T, Nishikawa R, Kakinuma H, Kojima N, Hitaka K, Tamura Y, Kamitani M, Mima M, Nozoe A, Hayashi M. Discovery of TP0597850: A Selective, Chemically Stable, and Slow Tight-Binding Matrix Metalloproteinase-2 Inhibitor with a Phenylbenzamide-Pentapeptide Hybrid Scaffold. J Med Chem 2023; 66:822-836. [PMID: 36595440 DOI: 10.1021/acs.jmedchem.2c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Matrix metalloproteinase-2 (MMP2) is a zinc-dependent endopeptidase and a promising target for various diseases, including cancer and fibrosis. Herein, we report the discovery of a novel MMP2-selective inhibitor with high chemical stability and slow tight-binding features. Based on the degradation mechanism of our small-molecule-peptide hybrid 1, the tripeptide linker {5-aminopentanoic acid [Ape(5)]-Glu-Asp} of 1 was replaced by a shorter linker (γ-D-Glu). Phenylbenzamide was suitable for the new generation of MMP2 inhibitors as an S1' pocket-binding group. The introduction of (4S)-aminoproline dramatically increased the chemical stability while maintaining high subtype selectivity because of its interaction with Glu130. TP0597850 (18) exhibited high stability over a wide range of pH values as well as potent MMP2 inhibition (Ki = 0.034 nM) and ≥2000-fold selectivity determined using the inhibition constants. A kinetic analysis revealed that it possesses slow tight-binding nature with a long MMP2 dissociative half-life (t1/2 = 265 min).
Collapse
Affiliation(s)
| | - Yusaku Nomura
- Taisho Pharmaceutical Co., Ltd., Saitama331-9530, Japan
| | - Tomoko Tamita
- Taisho Pharmaceutical Co., Ltd., Saitama331-9530, Japan
| | - Rie Nishikawa
- Taisho Pharmaceutical Co., Ltd., Saitama331-9530, Japan
| | | | - Naoki Kojima
- Taisho Pharmaceutical Co., Ltd., Saitama331-9530, Japan
| | - Kosuke Hitaka
- Taisho Pharmaceutical Co., Ltd., Saitama331-9530, Japan
| | | | | | - Masashi Mima
- Taisho Pharmaceutical Co., Ltd., Saitama331-9530, Japan
| | - Akiko Nozoe
- Taisho Pharmaceutical Co., Ltd., Saitama331-9530, Japan
| | | |
Collapse
|
7
|
Sanyal S, Amin SA, Banerjee P, Gayen S, Jha T. A review of MMP-2 structures and binding mode analysis of its inhibitors to strategize structure-based drug design. Bioorg Med Chem 2022; 74:117044. [DOI: 10.1016/j.bmc.2022.117044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 12/13/2022]
|
8
|
Takeuchi T, Hayashi M, Tamita T, Nomura Y, Kojima N, Mitani A, Takeda T, Hitaka K, Kato Y, Kamitani M, Mima M, Toki H, Ohkubo M, Nozoe A, Kakinuma H. Discovery of Aryloxyphenyl-Heptapeptide Hybrids as Potent and Selective Matrix Metalloproteinase-2 Inhibitors for the Treatment of Idiopathic Pulmonary Fibrosis. J Med Chem 2022; 65:8493-8510. [PMID: 35687819 DOI: 10.1021/acs.jmedchem.2c00613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Matrix metalloproteinase-2 (MMP2) is a zinc-dependent endopeptidase that plays important roles in the degradation of extracellular matrix proteins. MMP2 is considered to be an attractive target for the treatment of various diseases such as cancer, arthritis, and fibrosis. In this study, we have developed a novel class of MMP2-selective inhibitors by hybridizing the peptide that binds to a zinc ion and S2-S5 pockets with small molecules that bind to the S1' pocket. Structural modifications based on X-ray crystallography revealed that the introduction of 2,4-diaminobutanoic acid (Dab) at position 4 dramatically enhanced MMP2 selectivity by forming an electrostatic interaction with Glu130. After improving the metabolic and chemical stability, TP0556351 (9) was identified. It exhibited potent MMP2 inhibitory activity (IC50 = 0.20 nM) and extremely high selectivity. It suppressed the accumulation of collagen in a bleomycin-induced idiopathic pulmonary fibrosis model in mice, demonstrating the efficacy of MMP2-selective inhibitors for fibrosis.
Collapse
Affiliation(s)
| | - Masato Hayashi
- Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Tomoko Tamita
- Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Yusaku Nomura
- Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Naoki Kojima
- Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Akiko Mitani
- Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Takuya Takeda
- Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Kosuke Hitaka
- Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Yuki Kato
- Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | | | - Masashi Mima
- Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Hidetoh Toki
- Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | | | - Akiko Nozoe
- Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | | |
Collapse
|
9
|
Fang H, Li Y, Sang Y. Circ_0044516 inhibits cell proliferation and migration and induces apoptosis in gastric cancer cells by targeting miR-516a-5p. Shijie Huaren Xiaohua Zazhi 2022; 30:393-401. [DOI: 10.11569/wcjd.v30.i9.393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Circ_0044516 is highly expressed in gastric cancer, and inhibition of circ_0044516 can promote gastric cancer cell proliferation and induce apoptosis. Bioinformatics analysis predicts that miR-516a-5p binds to circ_0044516. The expression of miR-516a-5p is low in non-small cell lung cancer, but its role is unclear in gastric cancer cells. This study mainly explored the effect of circ_0044516 targeting miR-516a-5p on the proliferation, migration, and apoptosis of gastric cancer cells.
AIM To explore whether circ_0044516 targets and regulates miR-516a-5p and its effects on the proliferation, migration, and apoptosis of gastric cancer cells.
METHODS Quantitative real time polymerase chain reaction (qRT-PCR) was first used to detect the expression levels of circ_0044516 and miR-516a-5p in gastric epithelial cells GES-1 and gastric cancer cells (SNU-16 and HGC-27). HGC-27 cells were then divided into si-NC group (transfected with si-NC), si-circ_0044516 group (transfected with si-circ_0044516), miR-NC group (transfected with miR-NC), miR-516a-5p group (transfected with miR-516a-5p), si-circ_0044516 + anti-miR-NC group (co-transfected with si-circ_0044516 and anti-miR-NC), and si-circ_0044516 + anti-miR-516a-5p group (co-transfected with si-circ_0044516 and anti-miR-516a-5p). qRT-PCR was used to detect the expression levels of circ_0044516 and miR-516a-5p, MTT assay was used to detect cell proliferation, flow cytometry was performed to detect cell apoptosis, Transwell assay was used to detect cell migration, Western blot analysis was performed to detect the protein expression of p21, Bcl-2 associated X protein (Bax), B cell lymphoma/lewkmia-2 (Bcl-2), and matrix metalloproteinase 2 (MMP2), and dual luciferase reporter assay was ued to detect the targeting relationship between circ_0044516 and miR-516a-5p.
RESULTS Compared with gastric epithelial cells GES-1, the expression level of circ_0044516 was increased in gastric cancer cells SNU-16 and HGC-27, and the expression level of miR-516a-5p was decreased. Silencing circ_0044516 or overexpression of miR-516a-5p decreased the survival rate of gastric cancer cells and the number of migrating cells, increased the rate of cell apoptosis and the expression of p21 and Bax proteins, and reduced the expression of Bcl-2 and MMP2 proteins. Circ_0044516 targets and negatively regulates the expression of miR-516a-5p, and inhibition of miR-516a-5p partially restored the effect of silencing circ_0044516 on the proliferation, migration, and apoptosis of gastric cancer cells.
CONCLUSION Circ_0044516 inhibits cell proliferation and migration and induces apoptosis in gastric cancer cells through targeted negative regulation of miR-516a-5p.
Collapse
Affiliation(s)
- Hui Fang
- Department of Special Inspection, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang University of Traditional Chinese Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Ying Li
- Department of Special Inspection, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang University of Traditional Chinese Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Yi Sang
- Department of Gastroenterology, Hangzhou Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou 311700, Zhejiang Province, China
| |
Collapse
|