1
|
Bogdanov AV, Zaripova IF, Voloshina AD, Sapunova AS, Kulik NV, Tsivunina IV, Dobrynin AB, Mironov VF. Isatin derivatives bearing a fluorine atom. Part 1: Synthesis, hemotoxicity and antimicrobial activity evaluation of fluoro-benzylated water-soluble pyridinium isatin-3-acylhydrazones. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2019.109345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
2
|
Zeng JL, Zhang Y, Zheng MM, Zhang ZQ, Xue XS, Zhang FG, Ma JA. Chemodivergent and Stereoselective Construction of gem-Difluoroallylic Amines from Masked Difluorodiazo Reagents. Org Lett 2019; 21:8244-8249. [PMID: 31513413 DOI: 10.1021/acs.orglett.9b02989] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a general and efficient approach to construct achiral and chiral gem-difluoroallylic amines from a masked difluorodiazo reagent (PhSO2CF2CHN2) and readily available imines. This facile protocol takes advantage of the phenylsulfonyl and diazo moieties as efficient activating and directing groups to assist difluoroalkyl incorporation and facilitate the chemodivergent and stereoselective formation of gem-difluoroallylic amines.
Collapse
Affiliation(s)
- Jun-Liang Zeng
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering , Tianjin University , Tianjin 300072 P.R. China.,Joint School of NUS & TJU , International Campus of Tianjin University , Fuzhou 350207 , P.R. China
| | - Yue Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering , Tianjin University , Tianjin 300072 P.R. China.,Joint School of NUS & TJU , International Campus of Tianjin University , Fuzhou 350207 , P.R. China
| | - Meng-Meng Zheng
- State Key Laboratory of Elemento-Organic Chemistry , Nankai University , Tianjin 300071 , P.R. China
| | - Zhi-Qi Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering , Tianjin University , Tianjin 300072 P.R. China.,Joint School of NUS & TJU , International Campus of Tianjin University , Fuzhou 350207 , P.R. China
| | - Xiao-Song Xue
- State Key Laboratory of Elemento-Organic Chemistry , Nankai University , Tianjin 300071 , P.R. China
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering , Tianjin University , Tianjin 300072 P.R. China.,Joint School of NUS & TJU , International Campus of Tianjin University , Fuzhou 350207 , P.R. China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering , Tianjin University , Tianjin 300072 P.R. China.,Joint School of NUS & TJU , International Campus of Tianjin University , Fuzhou 350207 , P.R. China.,State Key Laboratory of Elemento-Organic Chemistry , Nankai University , Tianjin 300071 , P.R. China
| |
Collapse
|
3
|
Ortmeyer CP, Haufe G, Schwegmann K, Hermann S, Schäfers M, Börgel F, Wünsch B, Wagner S, Hugenberg V. Synthesis and evaluation of a [ 18F]BODIPY-labeled caspase-inhibitor. Bioorg Med Chem 2017; 25:2167-2176. [PMID: 28284866 DOI: 10.1016/j.bmc.2017.02.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/11/2017] [Accepted: 02/14/2017] [Indexed: 12/31/2022]
Abstract
BODIPYs (boron dipyrromethenes) are fluorescent dyes which show high stability and quantum yields. They feature the possibility of selective 18F-fluorination at the boron-core. Attached to a bioactive molecule and labeled with [18F]fluorine, the resulting compounds are promising tracers for multimodal imaging in vivo and can be used for PET and fluorescence imaging. A BODIPY containing a phenyl and a hydroxy substituent on boron was synthesized and characterized. Fluorinated and hydroxy substituted dyes were coupled to an isatin-based caspase inhibitor via cycloaddition and the resulting compounds were evaluated in vitro in caspase inhibition assays. The metabolic stability and the formed metabolites were investigated by incubation with mouse liver microsomes and LC-MS analysis. Subsequently the fluorophores were labeled with [18F]fluorine and an in vivo biodistribution study using dynamic PET was performed.
Collapse
Affiliation(s)
- Christian Paul Ortmeyer
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, D-48149 Münster, Germany; Organic Chemistry Institute, University of Münster, Corrensstr. 40, D-48149 Münster, Germany
| | - Günter Haufe
- Organic Chemistry Institute, University of Münster, Corrensstr. 40, D-48149 Münster, Germany; Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany.
| | - Katrin Schwegmann
- European Institute for Molecular Imaging, University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging, University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| | - Michael Schäfers
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, D-48149 Münster, Germany; Cells-in-Motion Cluster of Excellence, University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany; European Institute for Molecular Imaging, University of Münster, Waldeyerstr. 15, D-48149 Münster, Germany
| | - Frederik Börgel
- Institute for Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, D-48149 Münster, Germany
| | - Bernhard Wünsch
- Institute for Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, D-48149 Münster, Germany
| | - Stefan Wagner
- Department of Nuclear Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, D-48149 Münster, Germany
| | - Verena Hugenberg
- Institute for Radiology, Nuclear Medicine and Molecular Imaging, HDZ NRW, Georgstr. 11, D-32545 Bad Oeynhausen, Germany
| |
Collapse
|
4
|
Isatin sulfonamides: potent caspases-3 and -7 inhibitors, and promising PET and SPECT radiotracers for apoptosis imaging. Future Med Chem 2016; 7:1173-96. [PMID: 26132525 DOI: 10.4155/fmc.15.52] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Caspases-3 and -7 play an essential role in apoptosis. Isatin sulfonamides have been identified as potent inhibitors of these executing caspases. Besides pharmacological application, these compounds can also serve as recognition units to target caspases using positron emission tomography (PET) and single-photon emission computed tomography (SPECT) when labeled with a positron or a gamma emitter. Fluorinated, alkylated, arylated isatin derivatives, in addition to derivatives modified with heterocycles, have been prepared in order to improve their binding potency, selectivity and metabolic stability. Structural optimization has led to stable, highly active inhibitors, which after labeling have been applied in PET studies in tumor mouse models and for first preclinical and clinical investigations with healthy human volunteers. The results support further development of such radiotracers for clinical apoptosis imaging.
Collapse
|
5
|
Meyer F. Trifluoromethyl nitrogen heterocycles: synthetic aspects and potential biological targets. Chem Commun (Camb) 2016; 52:3077-94. [DOI: 10.1039/c5cc09414c] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The synthetic methodologies and the potential biological targets of α-trifluoromethylated nitrogen heterocycles are presented.
Collapse
Affiliation(s)
- F. Meyer
- Laboratory of Biopolymers and Supramolecular Nanomaterials
- Faculty of Pharmacy
- Université Libre de Bruxelles (ULB)
- 1050 Bruxelles
- Belgium
| |
Collapse
|
6
|
Novel fluorine-18 labeled 5-(1-pyrrolidinylsulfonyl)-7-azaisatin derivatives as potential PET tracers for in vivo imaging of activated caspases in apoptosis. Bioorg Med Chem 2015. [PMID: 26210158 DOI: 10.1016/j.bmc.2015.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The programmed type I cell death, defined as apoptosis, is induced by complex regulated signaling pathways that trigger the intracellular activation of executioner caspases-3, -6 and -7. Once activated, these enzymes initiate cellular death through cleavage of proteins which are responsible for DNA repair, signaling and cell maintenance. Several radiofluorinated inhibitors of caspases-3 and -7, comprising a moderate lipophilic 5-(1-pyrrolidinylsulfonyl)isatin lead structure, are currently being investigated for imaging apoptosis in vivo by us and others. The purpose of this study was to increase the intrinsic hydrophilicity of the aforementioned lead structure to alter the pharmacokinetic behavior of the resulting caspase-3 and -7 targeted radiotracer. Therefore, fluorinated and non-fluorinated derivatives of 5-(1-pyrrolidinylsulfonyl)-7-azaisatin were synthesized and tested for their inhibitory properties against recombinant caspases-3 and -7. Fluorine-18 has been introduced by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) of an alkyne precursor with 2-[(18)F]fluoroethylazide. Using dynamic micro-PET biodistribution studies in vivo the kinetic behavior of one promising PET-compatible 5-pyrrolidinylsulfonyl 7-azaisatin derivative has been compared to a previously described isatin based radiotracer.
Collapse
|
7
|
Limpachayaporn P, Wagner S, Kopka K, Schober O, Schäfers M, Haufe G. Synthesis of 7-Halogenated Isatin Sulfonamides: Nonradioactive Counterparts of Caspase-3/-7 Inhibitor-Based Potential Radiopharmaceuticals for Molecular Imaging of Apoptosis. J Med Chem 2014; 57:9383-95. [DOI: 10.1021/jm500718e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Panupun Limpachayaporn
- Organisch-Chemisches
Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße
40, D-48149 Münster, Germany
- International
NRW Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, D-48149 Münster, Germany
| | - Stefan Wagner
- Klinik
für Nuklearmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Campus
1, Gebäude A1, D-48149 Münster, Germany
| | - Klaus Kopka
- Klinik
für Nuklearmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Campus
1, Gebäude A1, D-48149 Münster, Germany
| | - Otmar Schober
- Klinik
für Nuklearmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Campus
1, Gebäude A1, D-48149 Münster, Germany
- Cells-in-Motion
Cluster of Excellence, Westfälische Wilhelms-Universität Münster, Waldeyerstraße 15, D-48149 Münster, Germany
| | - Michael Schäfers
- Klinik
für Nuklearmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Campus
1, Gebäude A1, D-48149 Münster, Germany
- European
Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Waldeyerstraße 15, D-48149 Münster, Germany
- Cells-in-Motion
Cluster of Excellence, Westfälische Wilhelms-Universität Münster, Waldeyerstraße 15, D-48149 Münster, Germany
| | - Günter Haufe
- Organisch-Chemisches
Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße
40, D-48149 Münster, Germany
- European
Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Waldeyerstraße 15, D-48149 Münster, Germany
- Cells-in-Motion
Cluster of Excellence, Westfälische Wilhelms-Universität Münster, Waldeyerstraße 15, D-48149 Münster, Germany
| |
Collapse
|
8
|
Guo Z, Yan Z, Zhou X, Wang Q, Lu M, Liu W, Zhou H, Yang C, McClain EJ. Synthesis and biological evaluation of novel 1,2-benzisothiazol-3-one-derived 1,2,3-triazoles as caspase-3 inhibitors. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1259-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Influence of 4- or 5-substituents on the pyrrolidine ring of 5-[1-(2-methoxymethylpyrrolidinyl)sulfonyl]isatin derivatives on their inhibitory activities towards caspases-3 and -7. Eur J Med Chem 2013; 64:562-78. [DOI: 10.1016/j.ejmech.2013.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 04/03/2013] [Accepted: 04/03/2013] [Indexed: 11/18/2022]
|
10
|
Limpachayaporn P, Wagner S, Kopka K, Hermann S, Schäfers M, Haufe G. Synthesis, 18F-radiolabeling, and in vivo biodistribution studies of N-fluorohydroxybutyl isatin sulfonamides using positron emission tomography. J Med Chem 2013; 56:4509-20. [PMID: 23656488 DOI: 10.1021/jm400257a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effector caspases-3 and -7 play a central role in programmed type I cell death (apoptosis). Molecular imaging using positron emission tomography (PET) by tracking the activity of executing caspases might allow the detection of the early onset as well as therapy monitoring of various diseases induced by dysregulated apoptosis. Herein, four new fluorinated diastereo- and enantiopure isatin sulfonamide-based potent and selective caspase-3 and -7 inhibitors were prepared by cyclic sulfate ring-opening with fluoride. All fluorohydrins exhibited excellent in vitro affinities (up to IC50 = 11.8 and 0.951 nM for caspase-3 and -7, respectively), which makes them appropriate PET radiotracer candidates. Therefore, N-(4-[(18)F]fluoro-3(R)-hydroxybutyl)- and N-(3(S)-[(18)F]fluoro-4-hydroxybutyl)-5-[1-(2(S)-(methoxymethyl)pyrrolidinyl)sulfonyl]isatin were synthesized in 140 min with 24% and 10% overall radiochemical yields and specific activities of 10-127 GBq/μmol using [(18)F]fluoride in the presence of Kryptofix and subsequent acidic hydrolysis. In vivo biodistribution studies in wild-type mice using PET/computed tomography imaging proved fast clearance of the tracer after tail vein injection.
Collapse
Affiliation(s)
- Panupun Limpachayaporn
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, D-48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Synthesis of new fluorinated, 2-substituted 5-pyrrolidinylsulfonyl isatin derivatives as caspase-3 and caspase-7 inhibitors: nonradioactive counterparts of putative PET-compatible apoptosis imaging agents. Bioorg Med Chem 2013; 21:2025-36. [PMID: 23411396 DOI: 10.1016/j.bmc.2013.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 11/21/2022]
Abstract
Downstream caspases-3 and -7 are essential to execute the programmed type I cell death (apoptosis). In order to better understand their role, specific inhibitors of these enzymes are required, which after radiolabeling can be applied to non-invasively visualize and monitor apoptotic pathways in vivo using Positron Emission Tomography (PET). Therefore, 2-methoxyethyl-, 2-methoxypropyl-, 2-ethoxymethyl-, 2-(2-fluoroethoxymethyl)-, and 2-(2,2,2-trifluoroethoxymethyl)pyrrolidinyl analogues of (S)-5-[1-(2-methoxymethylpyrrolidinyl)sulfonyl]isatin (2) were prepared and their in vitro binding affinities towards caspases-1, -3, -6 and -7 were evaluated and compared to that of the lead structure 2. While the inhibition potencies against caspases-1 and -6 were in the micromolar range, all synthesized compounds exhibited excellent and selective inhibition of caspases-3 and -7 in the nanomolar range up to IC50=4.79 nM and 7.47 nM, respectively. These highly potent 2-substituted analogues of 2 might be developed as anti-apoptosis agents and some selected fluorinated inhibitors might be useful as potential PET radiotracers for apoptosis imaging after (18)F-labeling.
Collapse
|
12
|
Krause-Heuer AM, Howell NR, Matesic L, Dhand G, Young EL, Burgess L, Jiang CD, Lengkeek NA, Fookes CJR, Pham TQ, Sobrio F, Greguric I, Fraser BH. A new class of fluorinated 5-pyrrolidinylsulfonyl isatin caspase inhibitors for PET imaging of apoptosis. MEDCHEMCOMM 2013. [DOI: 10.1039/c2md20249b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Haufe G, Suzuki S, Yasui H, Terada C, Kitayama T, Shiro M, Shibata N. CF Bond Activation of Unactivated Aliphatic Fluorides: Synthesis of Fluoromethyl-3,5-diaryl-2-oxazolidinones by Desymmetrization of 2-Aryl-1,3-difluoropropan-2-ols. Angew Chem Int Ed Engl 2012; 51:12275-9. [DOI: 10.1002/anie.201207304] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Indexed: 01/01/2023]
|
14
|
Haufe G, Suzuki S, Yasui H, Terada C, Kitayama T, Shiro M, Shibata N. CF Bond Activation of Unactivated Aliphatic Fluorides: Synthesis of Fluoromethyl-3,5-diaryl-2-oxazolidinones by Desymmetrization of 2-Aryl-1,3-difluoropropan-2-ols. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201207304] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Mlostoń G, Obijalska E, Heimgartner H. Synthesis of β-amino-α-trifluoromethyl alcohols and their applications in organic synthesis. J Fluor Chem 2010; 131:829-843. [PMID: 32287377 PMCID: PMC7125969 DOI: 10.1016/j.jfluchem.2010.05.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 05/21/2010] [Accepted: 05/29/2010] [Indexed: 11/26/2022]
Abstract
A comprehensive overview on methods applied for syntheses of β-amino-α-trifluoromethyl alcohols, including stereocontrolled variants, is presented. In addition, reported cases of the exploration of β-amino-α-trifluoromethyl alcohols for the preparation of trifluoromethylated peptidomimetics and other biologically active, fluorinated compounds are discussed. Attractive opportunities for their applications as organocatalysts are also presented.
Collapse
Affiliation(s)
- Grzegorz Mlostoń
- Department of Organic and Applied Chemistry, University of Łódź, Tamka 12, PL-91-403, Łódź, Poland
| | - Emilia Obijalska
- Department of Organic and Applied Chemistry, University of Łódź, Tamka 12, PL-91-403, Łódź, Poland
| | - Heinz Heimgartner
- Institute of Organic Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
16
|
Hugenberg V, Fröhlich R, Haufe G. Oxidative desulfurization–fluorination of thioethers. Application for the synthesis of fluorinated nitrogen containing building blocks. Org Biomol Chem 2010; 8:5682-91. [PMID: 20967318 DOI: 10.1039/c0ob00560f] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Verena Hugenberg
- Organisch-Chemisches Institut and European Institute for Molecular Imaging, Westfälische Wilhelms-Universität, Münster, Germany
| | | | | |
Collapse
|