1
|
Mologni L, Marzaro G, Redaelli S, Zambon A. Dual Kinase Targeting in Leukemia. Cancers (Basel) 2021; 13:E119. [PMID: 33401428 PMCID: PMC7796318 DOI: 10.3390/cancers13010119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
Pharmacological cancer therapy is often based on the concurrent inhibition of different survival pathways to improve treatment outcomes and to reduce the risk of relapses. While this strategy is traditionally pursued only through the co-administration of several drugs, the recent development of multi-targeting drugs (i.e., compounds intrinsically able to simultaneously target several macromolecules involved in cancer onset) has had a dramatic impact on cancer treatment. This review focuses on the most recent developments in dual-kinase inhibitors used in acute myeloid leukemia (AML), chronic myelogenous leukemia (CML), and lymphoid tumors, giving details on preclinical studies as well as ongoing clinical trials. A brief overview of dual-targeting inhibitors (kinase/histone deacetylase (HDAC) and kinase/tubulin polymerization inhibitors) applied to leukemia is also given. Finally, the very recently developed Proteolysis Targeting Chimeras (PROTAC)-based kinase inhibitors are presented.
Collapse
Affiliation(s)
- Luca Mologni
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.M.); (S.R.)
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, I-35131 Padova, Italy;
| | - Sara Redaelli
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.M.); (S.R.)
| | - Alfonso Zambon
- Department of Chemistry and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
2
|
Inhibition of mTORC1/P70S6K pathway by Metformin synergistically sensitizes Acute Myeloid Leukemia to Ara-C. Life Sci 2020; 243:117276. [PMID: 31926250 DOI: 10.1016/j.lfs.2020.117276] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/24/2019] [Accepted: 01/03/2020] [Indexed: 12/27/2022]
Abstract
AIMS Chemo-resistance still was the main obstacle for AML patients, more effective and less toxic forms of therapies were desperately needed. Metformin, a classic hypoglycemic drug for diabetes recently delivered us a new identity that it exerted anti-tumor activity through suppressing mTOR in various tumors. But the anti-tumor effect of metformin in AML was not clear. METHODS In this study, we used CCK8 assay and apoptosis assay to determine the anti-leukemia activity of metformin combined with AraC, and explore the mechanism of the joint role of Ara-C/metformin in AML. We finally used xenograft experiment in mice to determine the anti-leukemia effect of Ara-C/metformin in vivo. KEY FINDINGS We found that metformin could synergistically sensitize AML cells to Ara-C via inhibiting mTORC1/P70S6K pathway. In vivo experiment also verified metformin in aid of Ara-C caused an obviously synergistic anti-tumor effect. SIGNIFICANCE We firstly found the synergistic anti-tumor effect of Ara-C/metformin in AML through inhibiting mTORC1/P70S6K pathway.
Collapse
|
3
|
Xu DQ, Toyoda H, Yuan XJ, Qi L, Chelakkot VS, Morimoto M, Hanaki R, Kihira K, Hori H, Komada Y, Hirayama M. Anti-tumor effect of AZD8055 against neuroblastoma cells in vitro and in vivo. Exp Cell Res 2018; 365:177-184. [PMID: 29499203 DOI: 10.1016/j.yexcr.2018.02.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/30/2018] [Accepted: 02/24/2018] [Indexed: 10/17/2022]
Abstract
Neuroblastoma (NB) is one of the most common solid tumors in children. High-risk NB remains lethal in about 50% of patients despite comprehensive and intensive treatments. Activation of PI3K/Akt/mTOR signaling pathway correlates with oncogenesis, poor prognosis and chemotherapy resistance in NB. Due to its central role in growth and metabolism, mTOR seems to be an important factor in NB, making it a possible target for NB. In this study, we investigated the effect of AZD8055, a potent dual mTORC1-mTORC2 inhibitor, in NB cell lines. Our data showed that mTOR signaling was extensively activated in NB cells. The activity of mTOR and downstream molecules were down-regulated in AZD8055-treated NB cells. Significantly, AZD8055 effectively inhibited cell growth and induced cell cycle arrest, autophagy and apoptosis in NB cells. Moreover, AZD8055 significantly reduced tumor growth in mice xenograft model without apparent toxicity. Taken together, our results highlight the potential of mTOR as a promising target for NB treatment. Therefore, AZD8055 may be further investigated for treatment in clinical trials for high risk NB.
Collapse
Affiliation(s)
- Dong-Qing Xu
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Hidemi Toyoda
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Xiao-Jun Yuan
- Department of Pediatric Hematology/Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lei Qi
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Vipin Shankar Chelakkot
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Mari Morimoto
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Ryo Hanaki
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Kentarou Kihira
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Hiroki Hori
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Yoshihiro Komada
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Masahiro Hirayama
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan.
| |
Collapse
|
4
|
Herschbein L, Liesveld JL. Dueling for dual inhibition: Means to enhance effectiveness of PI3K/Akt/mTOR inhibitors in AML. Blood Rev 2017; 32:235-248. [PMID: 29276026 DOI: 10.1016/j.blre.2017.11.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/10/2017] [Accepted: 11/30/2017] [Indexed: 01/04/2023]
Abstract
The phosphatidylinositol 3-kinase/protein kinase B (Akt)/mechanistic target of rapamycin (PI3K/Akt/mTOR) pathway is amplified in 60-80% of patients with acute myelogenous leukemia (AML). Since this complex pathway is crucial to cell functions such as growth, proliferation, and survival, inhibition of this pathway would be postulated to inhibit leukemia initiation and propagation. Inhibition of the mTORC1 pathway has met with limited success in AML due to multiple resistance mechanisms including direct insensitivity of the mTORC1 complex, feedback activation of the PI3k/Akt signaling network, insulin growth factor-1 (IGF-1) activation of PI3K, and others. This review explores the role of mTOR inhibition in AML, mechanisms of resistance, and means to improve outcomes through use of dual mTORC1/2 inhibitors or dual TORC/PI3K inhibitors. How these inhibitors interface with currently available therapies in AML will require additional preclinical experiments and conduct of well-designed clinical trials.
Collapse
Affiliation(s)
- Lauren Herschbein
- Department of Medicine, The James P. Wilmot Cancer Institute, University of Rochester, Rochester, NY, USA.
| | - Jane L Liesveld
- Department of Medicine, The James P. Wilmot Cancer Institute, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
5
|
Ginsenoside PPD's Antitumor Effect via Down-Regulation of mTOR Revealed by Super-Resolution Imaging. Molecules 2017; 22:molecules22030486. [PMID: 28335497 PMCID: PMC6155369 DOI: 10.3390/molecules22030486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 12/19/2022] Open
Abstract
Derived from Panax ginseng, the natural product 20(S)-Protopanaxadiol (PPD) has been reported for its cytotoxicity against several cancer cell lines. The molecular mechanism is, however, not well understood. Here we show that PPD significantly inhibits proliferation, induces apoptosis and causes G2/M cell cycle arrest in human laryngeal carcinoma cells (Hep-2 cells). PPD also decreases the levels of proteins related to cell proliferation. Moreover, PPD-induced apoptosis is characterized by a dose-dependent down-regulation of Bcl-2 expression and up-regulation of Bax, and is accompanied by the activation of Caspase-3 as well. Further molecular mechanism is revealed by direct stochastic optical reconstruction microscopy (dSTORM)—a novel high-precision localization microscopy which enables effective resolution down to the order of 10 nm. It shows the expression and spatial arrangement of mTOR and its downstream effectors, demonstrating that this ginsenoside exerts its excellent anticancer effects via down-regulation of mTOR signaling pathway in Hep-2 cells. Taken together, our findings elucidate that the antitumor effect of PPD is associated with its regulation of mTOR expression and distribution, which encourages further studies of PPD as a promising therapeutic agent against laryngeal carcinoma.
Collapse
|
6
|
Diamanti S, Nikitakis N, Rassidakis G, Doulis I, Sklavounou A. Immunohistochemical evaluation of the mTOR pathway in intra-oral minor salivary gland neoplasms. Oral Dis 2016; 22:620-9. [PMID: 27177463 DOI: 10.1111/odi.12504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 04/16/2016] [Accepted: 05/04/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the expression of upstream and downstream molecules of the oncogenic mTOR signaling pathway in intra-oral minor salivary gland tumors (SGTs). MATERIALS AND METHODS Tissue samples consisted of 39 malignant and 13 benign minor SGTs, and 8 controls of normal minor salivary glands (NMSG). An immunohistochemical analysis for phosphorylated Akt, 4EBP1 and S6 (total and phosphorylated), and eIF4E was performed. RESULTS Expression of pAkt and 4EBP1 was observed in all SGTs and in most NMSG. p4EBP1 was detected in almost all SGT cases, NMSG being negative. S6 immunoreactivity was observed in 37.5% of NMSG, 92.3% of benign and 100% of malignant SGTs, while pS6 expression was observed in 77% of benign and 95% of malignant SGTs, but not in NMSG. Finally, eIF4E was expressed in 12.5% of NMSG, 69.2% of benign, and 76.9% of malignant tumors. All molecules studied had statistically significantly lower expression in NMSG compared with SGTs. Moreover, malignant neoplasms received higher scores compared with benign tumors for all molecules with the exception of eIF4E. CONCLUSION The mTOR signaling pathway is activated in SGTs, especially in malignancies. Therefore, the possible therapeutic role of targeting the mTOR pathway by rapamycin analogs in SGTs needs further investigation.
Collapse
Affiliation(s)
- S Diamanti
- Department of Oral Medicine and Pathology, Dental School, University of Athens, Athens, Greece. , .,Oral Medicine Department, 251 General Air Force and VA Hospital, Athens, Greece. ,
| | - N Nikitakis
- Department of Oral Medicine and Pathology, Dental School, University of Athens, Athens, Greece
| | - G Rassidakis
- Department of Pathology, Medical School, University of Athens, Athens, Greece.,Department of Pathology and Cytology, Carolinska University Hospital and Karolinska Institute, Solna, Sweden
| | - I Doulis
- Oral Medicine Department, 251 General Air Force and VA Hospital, Athens, Greece
| | - A Sklavounou
- Department of Oral Medicine and Pathology, Dental School, University of Athens, Athens, Greece
| |
Collapse
|
7
|
Yang D, Qu J, Qu X, Cao Y, Xu L, Hou K, Feng W, Liu Y. Gossypol sensitizes the antitumor activity of 5-FU through down-regulation of thymidylate synthase in human colon carcinoma cells. Cancer Chemother Pharmacol 2015. [PMID: 26208739 DOI: 10.1007/s00280-015-2749-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE 5-Fluorouracil (5-FU) is the basic chemotherapeutic agent used to treat colon cancer. However, the sensitivity of colon cancer cells to 5-FU is limited. Gossypol is a polyphenolic extract of cottonseeds. The purpose of this study was to investigate the activities and related mechanism of gossypol alone or in combination with 5-FU against human colon carcinoma cells. METHODS The IC50 of gossypol or/and 5-FU in vitro was tested by 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, and the drug interaction was analyzed using the CalcuSyn method. Cell apoptosis was determined using presidium iodide staining and flow cytometric analysis. Western blotting was used to determine the expression of proteins. Transient transfection method was used to silence protein. RESULTS The IC₅₀ at 48 h of gossypol in colon cancer cells was 26.11 ± 1.04 μmol/L in HT-29 cells, 14.11 ± 1.08 μmol/L in HCT116 cells, and 21.83 ± 1.05 μmol/L in RKO cells. When gossypol was combined with 5-FU, a synergistic cytotoxic effect was observed in HT-29 cells, HCT116 cells, and RKO cells compared with treatment with gossypol or 5-FU alone. The Western blotting results indicated that gossypol down-regulated thymidylate synthase (TS) rather than thymidine phosphorylase protein expression. Furthermore, the mTOR/p70S6K1 signaling pathway was inhibited in gossypol-treated colon cancer cells, and consequently, cyclin D1 expression was decreased, suggesting an additional mechanism of the observed antiproliferative synergistic interactions. All the observation was confirmed by silencing TS and inactivating the mTOR/p70S6K1 signaling pathway by rapamycin, both of which increased the chemo-sensitizing efficacy of 5-FU. CONCLUSIONS These findings suggest that gossypol-mediated down-regulation of TS, cyclin D1, and the mTOR/p70S6K1 signaling pathways enhances the anti-tumor effect of 5-FU. Ultimately, our data exposed a new action for gossypol as an enhancer of 5-FU-induced cell growth suppression.
Collapse
Affiliation(s)
- Dan Yang
- Department of Pharmacology, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Bauer A, Brönstrup M. Industrial natural product chemistry for drug discovery and development. Nat Prod Rep 2014; 31:35-60. [DOI: 10.1039/c3np70058e] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Harnessing the PI3K/Akt/mTOR pathway in T-cell acute lymphoblastic leukemia: eliminating activity by targeting at different levels. Oncotarget 2013; 3:811-23. [PMID: 22885370 PMCID: PMC3478458 DOI: 10.18632/oncotarget.579] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignant hematological disorder arising in the thymus from T-cell progenitors. T-ALL mainly affects children and young adults, and remains fatal in 20% of adolescents and 50% of adults, despite progress in polychemotherapy protocols. Therefore, innovative targeted therapies are desperately needed for patients with a dismal prognosis. Aberrant activation of PI3K/Akt/mTOR signaling is a common event in T-ALL patients and portends a poor prognosis. Preclinical studies have highlighted that modulators of PI3K/Akt/mTOR signaling could have a therapeutic relevance in T-ALL. However, the best strategy for inhibiting this highly complex signal transduction pathway is still unclear, as the pharmaceutical companies have disclosed an impressive array of small molecules targeting this signaling network at different levels. Here, we demonstrate that a dual PI3K/PDK1 inhibitor, NVP-BAG956, displayed the most powerful cytotoxic effects against T-ALL cell lines and primary patients samples, when compared with a pan class I PI3K inhibitor (GDC-0941), an allosteric Akt inhibitor (MK-2206), an mTORC1 allosteric inhibitor (RAD-001), or an ATP-competitive mTORC1/mTORC2 inhibitor (KU-63794). Moreover, we also document that combinations of some of the aforementioned drugs strongly synergized against T-ALL cells at concentrations well below their respective IC50. This observation indicates that vertical inhibition at different levels of the PI3K/Akt/mTOR network could be considered as a future innovative strategy for treating T-ALL patients.
Collapse
|
10
|
CAI YUCHEN, XIA QING, SU QUANGUAN, LUO RONGZHEN, SUN YUELI, SHI YANXIA, JIANG WENQI. mTOR inhibitor RAD001 (everolimus) induces apoptotic, not autophagic cell death, in human nasopharyngeal carcinoma cells. Int J Mol Med 2013; 31:904-12. [DOI: 10.3892/ijmm.2013.1282] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 12/27/2012] [Indexed: 11/05/2022] Open
|
11
|
mTOR: on target for novel therapeutic strategies in the nervous system. Trends Mol Med 2012; 19:51-60. [PMID: 23265840 DOI: 10.1016/j.molmed.2012.11.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 10/18/2012] [Accepted: 11/03/2012] [Indexed: 12/17/2022]
Abstract
The mammalian target of rapamycin (mTOR), the key component of the protein complexes mTORC1 and mTORC2, plays a critical role in cellular development, tissue regeneration, and repair. mTOR signaling can govern not only stem cell development and quiescence but also cell death during apoptosis or autophagy. Recent studies highlight the importance of both traditional and newly recognized interactors of mTOR, such as p70S6K, 4EBP1, GSK-3β, REDD1/RTP801, TSC1/TSC2, growth factors, wingless, and forkhead transcription factors, that influence Alzheimer's disease, Parkinson's disease, Huntington's disease, tuberous sclerosis, and epilepsy. Targeting mTOR in the nervous system can offer exciting new avenues of drug discovery, but crucial to this premise is elucidating the complexity of mTOR signaling for robust and safe clinical outcomes.
Collapse
|
12
|
Li S, Li Y, Hu R, Li W, Qiu H, Cai H, Wang S. The mTOR inhibitor AZD8055 inhibits proliferation and glycolysis in cervical cancer cells. Oncol Lett 2012; 5:717-721. [PMID: 23420667 PMCID: PMC3573114 DOI: 10.3892/ol.2012.1058] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/20/2012] [Indexed: 12/01/2022] Open
Abstract
The aim of the present study was to determine the effect of AZD8055 on proliferation, apoptosis and glycolysis in the human cervical cancer cell line HeLa and to investigate the underlying mechanism(s) of action. HeLa human cervical cancer cells were treated with 10 nM AZD8055 for 24, 48 or 72 h. MTT was used to determine cell proliferation. Annexin V/propidium iodide staining was used to determine cell apoptosis analyzed by fluorescence-activated cell sorting (FACS). Glycolytic activity was determined by measuring the activity of the key enzyme lactate dehydrogenase (LDH) and lactate production. RNA and protein expression were examined by qRT-PCR and western blotting, respectively. Treatment with AZD8055 inhibited proliferation and glycolysis, and induced apoptosis in HeLa cells in a time-dependent manner. During the prolonged treatment with AZD8055, the phosphorylation of mammalian target of rapamycin (mTOR) C1 substrates p70S6K and phosphorylation of the mTORC2 substrate Akt were deregulated, suggesting that the activity of mTOR was downregulated. Furthermore, our study showed that the expression of miR-143 was upregulated in a time-dependent manner in HeLa cells treated with AZD8055. In summary, the present study reveals a novel antitumor mechanism of AZD8055 in HeLa human cervical cancer cells.
Collapse
Affiliation(s)
- Shaoru Li
- Departments of Gynecology and Obstetrics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100
| | | | | | | | | | | | | |
Collapse
|
13
|
Chong ZZ, Shang YC, Wang S, Maiese K. A Critical Kinase Cascade in Neurological Disorders: PI 3-K, Akt, and mTOR. FUTURE NEUROLOGY 2012; 7:733-748. [PMID: 23144589 DOI: 10.2217/fnl.12.72] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neurodegenerative disorders lead to disability and death in a significant proportion of the world's population. However, many disorders of the nervous system remain with limited effective treatments. Kinase pathways in the nervous system that involve phosphoinositide 3-kinase (PI 3-K), protein kinase B (Akt), and the mammalian target of rapamycin (mTOR) offer exciting prospects for the understanding of neurodegenerative pathways and the development of new avenues of treatment. PI 3-K, Akt, and mTOR pathways are vital cellular components that determine cell fate during acute and chronic disorders, such as Huntington's disease, Alzheimer's disease, Parkinson's disease, epilepsy, stroke, and trauma. Yet, the elaborate relationship among these kinases and the variable control of apoptosis and autophagy can lead to unanticipated biological and clinical outcomes. Crucial for the successful translation of PI 3-K, Akt, and mTOR into robust and safe clinical strategies will be the further elucidation of the complex roles that these kinase pathways hold in the nervous system.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Laboratory of Cellular and Molecular Signaling, Newark, New Jersey 07101 ; New Jersey Health Sciences University, Newark, New Jersey 07101
| | | | | | | |
Collapse
|
14
|
Interview: Interview with Future Medicinal Chemistry’s US Senior Editor, Iwao Ojima. Future Med Chem 2012; 4:2019-22. [DOI: 10.4155/fmc.12.151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Professor Iwao Ojima studied at the University of Tokyo (Japan) before being appointed as a Senior Research Fellow and Group Leader at the Sagami Institute of Chemical Research. He is now Director of the Institute of Chemical Biology and Drug Discovery at State University of New York (USA) and has been a visiting professor in European, North American and Asian academic institutions. Professor Ojima agreed to serve as the US Senior Editor of Future Medicinal Chemistry when it launched in 2009 and continues to provide his expertise to the journal. Professor Ojima spoke to Future Medicinal Chemistry about why medicinal chemistry is such an exciting field to work in, the state of the pharmaceutical industry, and what features and issues make this journal unique. Interview conducted by Isaac Bruce, Commissioning Editor.
Collapse
|
15
|
Maiese K, Chong ZZ, Shang YC, Wang S. Erythropoietin: new directions for the nervous system. Int J Mol Sci 2012; 13:11102-11129. [PMID: 23109841 PMCID: PMC3472733 DOI: 10.3390/ijms130911102] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/16/2012] [Accepted: 08/30/2012] [Indexed: 12/14/2022] Open
Abstract
New treatment strategies with erythropoietin (EPO) offer exciting opportunities to prevent the onset and progression of neurodegenerative disorders that currently lack effective therapy and can progress to devastating disability in patients. EPO and its receptor are present in multiple systems of the body and can impact disease progression in the nervous, vascular, and immune systems that ultimately affect disorders such as Alzheimer's disease, Parkinson's disease, retinal injury, stroke, and demyelinating disease. EPO relies upon wingless signaling with Wnt1 and an intimate relationship with the pathways of phosphoinositide 3-kinase (PI 3-K), protein kinase B (Akt), and mammalian target of rapamycin (mTOR). Modulation of these pathways by EPO can govern the apoptotic cascade to control β-catenin, glycogen synthase kinase-3β, mitochondrial permeability, cytochrome c release, and caspase activation. Yet, EPO and each of these downstream pathways require precise biological modulation to avert complications associated with the vascular system, tumorigenesis, and progression of nervous system disorders. Further understanding of the intimate and complex relationship of EPO and the signaling pathways of Wnt, PI 3-K, Akt, and mTOR are critical for the effective clinical translation of these cell pathways into robust treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- Cancer Institute of New Jersey, New Brunswick, New Jersey 08901, USA
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| | - Zhao Zhong Chong
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| | - Yan Chen Shang
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| | - Shaohui Wang
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| |
Collapse
|