1
|
Woods AG, Wormwood KL, Iosifescu DV, Murrough J, Darie CC. Protein Biomarkers in Major Depressive Disorder: An Update. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:585-600. [DOI: 10.1007/978-3-030-15950-4_35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
2
|
Liu W, Li MD. Insights Into Nicotinic Receptor Signaling in Nicotine Addiction: Implications for Prevention and Treatment. Curr Neuropharmacol 2018; 16:350-370. [PMID: 28762314 PMCID: PMC6018190 DOI: 10.2174/1570159x15666170801103009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/18/2017] [Accepted: 07/28/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Nicotinic acetylcholine receptors (nAChRs) belong to the Cys-loop ligandgated ion-channel (LGIC) superfamily, which also includes the GABA, glycine, and serotonin receptors. Many nAChR subunits have been identified and shown to be involved in signal transduction on binding to them of either the neurotransmitter acetylcholine or exogenous ligands such as nicotine. The nAChRs are pentameric assemblies of homologous subunits surrounding a central pore that gates cation flux, and they are expressed at neuromuscular junctions throughout the nervous system. METHODS AND RESULTS Because different nAChR subunits assemble into a variety of pharmacologically distinct receptor subtypes, and different nAChRs are implicated in various physiological functions and pathophysiological conditions, nAChRs represent potential molecular targets for drug addiction and medical therapeutic research. This review intends to provide insights into recent advances in nAChR signaling, considering the subtypes and subunits of nAChRs and their roles in nicotinic cholinergic systems, including structure, diversity, functional allosteric modulation, targeted knockout mutations, and rare variations of specific subunits, and the potency and functional effects of mutations by focusing on their effects on nicotine addiction (NA) and smoking cessation (SC). Furthermore, we review the possible mechanisms of action of nAChRs in NA and SC based on our current knowledge. CONCLUSION Understanding these cellular and molecular mechanisms will lead to better translational and therapeutic operations and outcomes for the prevention and treatment of NA and other drug addictions, as well as chronic diseases, such as Alzheimer's and Parkinson's. Finally, we put forward some suggestions and recommendations for therapy and treatment of NA and other chronic diseases.
Collapse
Affiliation(s)
- Wuyi Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,School of Biological Sciences and Food Engineering, Fuyang Normal University, Fuyang, Anuhi 236041, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China.,Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, United States
| |
Collapse
|
3
|
Reyes-Parada M, Iturriaga-Vasquez P. The development of novel polypharmacological agents targeting the multiple binding sites of nicotinic acetylcholine receptors. Expert Opin Drug Discov 2016; 11:969-81. [DOI: 10.1080/17460441.2016.1227317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Multiple binding sites in the nicotinic acetylcholine receptors: An opportunity for polypharmacolgy. Pharmacol Res 2015; 101:9-17. [PMID: 26318763 DOI: 10.1016/j.phrs.2015.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 08/20/2015] [Accepted: 08/20/2015] [Indexed: 12/21/2022]
Abstract
For decades, the development of selective compounds has been the main goal for chemists and biologists involved in drug discovery. However, diverse lines of evidence indicate that polypharmacological agents, i.e. those that act simultaneously at various protein targets, might show better profiles than selective ligands, regarding both efficacy and side effects. On the other hand, the availability of the crystal structure of different receptors allows a detailed analysis of the main interactions between drugs and receptors in a specific binding site. Neuronal nicotinic acetylcholine receptors (nAChRs) constitute a large and diverse family of ligand-gated ion channels (LGICs) that, as a product of its modulation, regulate neurotransmitter release, which in turns produce a global neuromodulation of the central nervous system. nAChRs are pentameric protein complexes in such a way that expression of compatible subunits can lead to various receptor assemblies or subtypes. The agonist binding site, located at the extracellular region, exhibits different properties depending on the subunits that conform the receptor. In the last years, it has been recognized that nAChRs could also contain one or more allosteric sites which could bind non-classical nicotinic ligands including several therapeutically useful drugs. The presence of multiple binding sites in nAChRs offers an interesting possibility for the development of novel polypharmacological agents with a wide spectrum of actions.
Collapse
|
5
|
Allosteric modulation of nicotinic acetylcholine receptors. Biochem Pharmacol 2015; 97:408-417. [PMID: 26231943 DOI: 10.1016/j.bcp.2015.07.028] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/24/2015] [Indexed: 12/12/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are receptors for the neurotransmitter acetylcholine and are members of the 'Cys-loop' family of pentameric ligand-gated ion channels (LGICs). Acetylcholine binds in the receptor extracellular domain at the interface between two subunits and research has identified a large number of nAChR-selective ligands, including agonists and competitive antagonists, that bind at the same site as acetylcholine (commonly referred to as the orthosteric binding site). In addition, more recent research has identified ligands that are able to modulate nAChR function by binding to sites that are distinct from the binding site for acetylcholine, including sites located in the transmembrane domain. These include positive allosteric modulators (PAMs), negative allosteric modulators (NAMs), silent allosteric modulators (SAMs) and compounds that are able to activate nAChRs via an allosteric binding site (allosteric agonists). Our aim in this article is to review important aspects of the pharmacological diversity of nAChR allosteric modulators and to describe recent evidence aimed at identifying binding sites for allosteric modulators on nAChRs.
Collapse
|
6
|
Grupe M, Grunnet M, Bastlund JF, Jensen AA. Targeting α4β2 Nicotinic Acetylcholine Receptors in Central Nervous System Disorders: Perspectives on Positive Allosteric Modulation as a Therapeutic Approach. Basic Clin Pharmacol Toxicol 2014; 116:187-200. [DOI: 10.1111/bcpt.12361] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/24/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Morten Grupe
- Synaptic Transmission; H. Lundbeck A/S; Valby Denmark
| | - Morten Grunnet
- Synaptic Transmission; H. Lundbeck A/S; Valby Denmark
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | | | - Anders A. Jensen
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
7
|
Gill-Thind JK, Dhankher P, D'Oyley JM, Sheppard TD, Millar NS. Structurally similar allosteric modulators of α7 nicotinic acetylcholine receptors exhibit five distinct pharmacological effects. J Biol Chem 2014; 290:3552-62. [PMID: 25516597 PMCID: PMC4319022 DOI: 10.1074/jbc.m114.619221] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of nicotinic acetylcholine receptors (nAChRs) is associated with the binding of agonists such as acetylcholine to an extracellular site that is located at the interface between two adjacent receptor subunits. More recently, there has been considerable interest in compounds, such as positive and negative allosteric modulators (PAMs and NAMs), that are able to modulate nAChR function by binding to distinct allosteric sites. Here we examined a series of compounds differing only in methyl substitution of a single aromatic ring. This series of compounds includes a previously described α7-selective allosteric agonist, cis-cis-4-p-tolyl-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide (4MP-TQS), together with all other possible combinations of methyl substitution at a phenyl ring (18 additional compounds). Studies conducted with this series of compounds have revealed five distinct pharmacological effects on α7 nAChRs. These five effects can be summarized as: 1) nondesensitizing activation (allosteric agonists), 2) potentiation associated with minimal effects on receptor desensitization (type I PAMs), 3) potentiation associated with reduced desensitization (type II PAMs), 4) noncompetitive antagonism (NAMs), and 5) compounds that have no effect on orthosteric agonist responses but block allosteric modulation (silent allosteric modulators (SAMs)). Several lines of experimental evidence are consistent with all of these compounds acting at a common, transmembrane allosteric site. Notably, all of these chemically similar compounds that have been classified as nondesensitizing allosteric agonists or as nondesensitizing (type II) PAMs are cis-cis-diastereoisomers, whereas all of the NAMs, SAMs, and type I PAMs are cis-trans-diastereoisomers. Our data illustrate the remarkable pharmacological diversity of allosteric modulators acting on nAChRs.
Collapse
Affiliation(s)
- JasKiran K Gill-Thind
- From the Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT, United Kingdom and
| | - Persis Dhankher
- the Department of Chemistry, University College London, London, WC1H 0AJ, United Kingdom
| | - Jarryl M D'Oyley
- the Department of Chemistry, University College London, London, WC1H 0AJ, United Kingdom
| | - Tom D Sheppard
- the Department of Chemistry, University College London, London, WC1H 0AJ, United Kingdom
| | - Neil S Millar
- From the Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT, United Kingdom and
| |
Collapse
|
8
|
Benallegue N, Mazzaferro S, Alcaino C, Bermudez I. The additional ACh binding site at the α4(+)/α4(-) interface of the (α4β2)2α4 nicotinic ACh receptor contributes to desensitization. Br J Pharmacol 2014; 170:304-16. [PMID: 23742319 DOI: 10.1111/bph.12268] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 05/16/2013] [Accepted: 05/23/2013] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Nicotinic ACh (α4β2)2α4 receptors are highly prone to desensitization by prolonged exposure to low concentrations of agonist. Here, we report on the sensitivity of the three agonist sites of the (α4β2)2α4 to desensitization induced by prolonged exposure to ACh. We present electrophysiological data that show that the agonist sites of the (α4β2)2α4 receptor have different sensitivity to desensitization and that full receptor occupation decreases sensitivity to desensitization. EXPERIMENTAL APPROACH Two-electrode voltage-clamp electrophysiology was used to study the desensitization of concatenated (α4β2)2α4 receptors expressed heterologously in Xenopus oocytes. Desensitization was assessed by measuring the degree of functional inhibition caused by prolonged exposure to ACh, as measured under equilibrium conditions. We used the single-point mutation α4W182A to measure the contribution of individual agonist sites to desensitization. KEY RESULTS (α4β2)2α4 receptors are less sensitive to activation and desensitization by ACh than (α4β2)2β2 receptors. Incorporation of α4W182A into any of the agonist sites of concatenated (α4β2)2α4 receptors decreased sensitivity to activation and desensitization but the effects were more pronounced when the mutation was introduced into the α4(+)/α4(-) interface. CONCLUSIONS AND IMPLICATIONS The findings suggest that the agonist sites in (α4β2)2α4 receptors are not functionally equivalent. The agonist site at the α4(+)/α4(-) interface defines the sensitivity of (α4β2)2α4 receptors to agonist-induced activation and desensitization. Functional differences between (α4β2)2α4 and (α4β2)2β2 receptors might shape the physiological and behavioural responses to nicotinic ligands when the receptors are exposed to nicotinic ligands for prolonged periods of times.
Collapse
Affiliation(s)
- N Benallegue
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | | | | | | |
Collapse
|
9
|
Mazzaferro S, Gasparri F, New K, Alcaino C, Faundez M, Iturriaga Vasquez P, Vijayan R, Biggin PC, Bermudez I. Non-equivalent ligand selectivity of agonist sites in (α4β2)2α4 nicotinic acetylcholine receptors: a key determinant of agonist efficacy. J Biol Chem 2014; 289:21795-806. [PMID: 24936069 DOI: 10.1074/jbc.m114.555136] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The α4β2 nicotinic acetylcholine receptor (nAChR) is the most abundant nAChR type in the brain, and this receptor type exists in alternate (α4β2)2α4 and (α4β2)2β2 forms, which are activated by agonists with strikingly differing efficacies. Recent breakthroughs have identified an additional operational agonist binding site in the (α4β2)2α4 nAChR that is responsible for the signature sensitivity of this receptor to activation by agonists, yet the structural mechanisms determining agonist efficacy at this receptor type are not yet fully understood. In this study, we characterized the ligand selectivity of the individual agonist sites of the (α4β2)2α4 nAChR to determine whether differences in agonist selectivity influence agonist efficacy. Applying the substituted cysteine accessibility method to individual agonist sites in concatenated (α4β2)2α4 receptors, we determined the agonist selectivity of the agonist sites of the (α4β2)2α4 receptor. We show that (a) accessibility of substituted cysteines to covalent modification by methanesulfonate reagent depends on the agonist site at which the modification occurs and (b) that agonists such as sazetidine-A and TC-2559 are excluded from the site at the α4/α4 interface. Given that additional binding to the agonist site in the α4/α4 interface increases acetylcholine efficacy and that agonists excluded from the agonist site at the α4/α4 interface behave as partial agonists, we conclude that the ability to engage all agonist sites in (α4β2)2α4 nAChRs is a key determinant of agonist efficacy. The findings add another level of complexity to the structural mechanisms that govern agonist efficacy in heteromeric nAChRs and related ligand-gated ion channels.
Collapse
Affiliation(s)
- Simone Mazzaferro
- From the Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, United Kingdom
| | - Federica Gasparri
- From the Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, United Kingdom
| | - Karina New
- From the Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, United Kingdom
| | - Constanza Alcaino
- From the Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, United Kingdom
| | - Manuel Faundez
- the Department of Chemistry, Faculty of Sciences, University of Chile, Santiago, Chile
| | | | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates, and
| | - Philip C Biggin
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Isabel Bermudez
- From the Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, United Kingdom,
| |
Collapse
|
10
|
Biomarkers in major depressive disorder: the role of mass spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:545-60. [PMID: 24952202 DOI: 10.1007/978-3-319-06068-2_27] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Major depressive disorder (MDD) is common. Despite numerous available treatments, many individuals fail to improve clinically. MDD continues to be diagnosed exclusively via behavioral rather than biological methods. Biomarkers-which include measurements of genes, proteins, and patterns of brain activity-may provide an important objective tool for the diagnosis of MDD or in the rational selection of treatments. Proteomic analysis and validation of its results as biomarkers is less explored than other areas of biomarker research in MDD. Mass spectrometry (MS) is a comprehensive, unbiased means of proteomic analysis, which can be complemented by directed protein measurements, such as Western Blotting. Prior studies have focused on MS analysis of several human biomaterials in MDD, including human post-mortem brain, cerebrospinal fluid (CSF), blood components, and urine. Further studies utilizing MS and proteomic analysis in MDD may help solidify and establish biomarkers for use in diagnosis, identification of new treatment targets, and understanding of the disorder. The ultimate goal is the validation of a biomarker or a biomarker signature that facilitates a convenient and inexpensive predictive test for depression treatment response and helps clinicians in the rational selection of next-step treatments.
Collapse
|