1
|
Sarkar P, Xu W, Vázquez-Hernández M, Dhanda G, Tripathi S, Basak D, Xie H, Schipp L, Dietze P, Bandow JE, Nair NN, Haldar J. Enhancing the antibacterial efficacy of vancomycin analogues: targeting metallo-β-lactamases and cell wall biosynthesis. Chem Sci 2024:d4sc03577a. [PMID: 39309102 PMCID: PMC11409854 DOI: 10.1039/d4sc03577a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024] Open
Abstract
Vancomycin is a crucial last-resort antibiotic for tackling Gram-positive bacterial infections. However, its potency fails against the more difficult-to-treat Gram-negative bacteria (GNB). Vancomycin derivatives have shown promise as broad-spectrum antibacterials, but are still underexplored. Toward this, we present a novel strategy wherein we substitute the sugar moiety of vancomycin with a dipicolyl amine group, yielding VanNHdipi. This novel glycopeptide enhances its efficacy against vancomycin-resistant bacteria by up to 100-fold. A comprehensive approach involving microbiological assays, biochemical analyses, proteomics, and computational studies unraveled the impact of this design on biological activity. Our investigations reveal that VanNHdipi, like vancomycin, disrupts membrane-bound steps of cell wall synthesis inducing envelope stress, while also interfering with the structural integrity of the cytoplasmic membrane, setting it apart from vancomycin. Most noteworthy is its potency against critical GNB producing metallo-β-lactamases (MBLs). VanNHdipi effectively inactivates various MBLs with IC50 in the range of 0.2-10 μM resulting in resensitization of MBL-producing bacteria to carbapenems. Molecular docking and molecular dynamics (MD) studies indicate that H-bonding interactions between the sugar moiety of the vancomycin derivative with the amino acids on the surface of NDM-1 facilitate enhanced binding affinity for the enzyme. This work expands the scope of vancomycin derivatives and offers a promising new avenue for combating antibiotic resistance.
Collapse
Affiliation(s)
- Paramita Sarkar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bengaluru 560064 Karnataka India +91 802208 2565
| | - Weipan Xu
- School of Pharmacy, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 China
| | - Melissa Vázquez-Hernández
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum Universitätsstraße 150 44780 Bochum Germany
| | - Geetika Dhanda
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bengaluru 560064 Karnataka India +91 802208 2565
| | - Shubhandra Tripathi
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur 20816 India
| | - Debajyoti Basak
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bengaluru 560064 Karnataka India +91 802208 2565
| | - Hexin Xie
- School of Pharmacy, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 China
| | - Lea Schipp
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum Universitätsstraße 150 44780 Bochum Germany
| | - Pascal Dietze
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum Universitätsstraße 150 44780 Bochum Germany
| | - Julia E Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum Universitätsstraße 150 44780 Bochum Germany
| | - Nishanth N Nair
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur 20816 India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bengaluru 560064 Karnataka India +91 802208 2565
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bengaluru 560064 Karnataka India
| |
Collapse
|
2
|
Chosy MB, Sun J, Rahn HP, Liu X, Brčić J, Wender PA, Cegelski L. Vancomycin-Polyguanidino Dendrimer Conjugates Inhibit Growth of Antibiotic-Resistant Gram-Positive and Gram-Negative Bacteria and Eradicate Biofilm-Associated S. aureus. ACS Infect Dis 2024; 10:384-397. [PMID: 38252999 DOI: 10.1021/acsinfecdis.3c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The global challenge of antibiotic resistance necessitates the introduction of more effective antibiotics. Here we report a potentially general design strategy, exemplified with vancomycin, that improves and expands antibiotic performance. Vancomycin is one of the most important antibiotics in use today for the treatment of Gram-positive infections. However, it fails to eradicate difficult-to-treat biofilm populations. Vancomycin is also ineffective in killing Gram-negative bacteria due to its inability to breach the outer membrane. Inspired by our seminal studies on cell penetrating guanidinium-rich transporters (e.g., octaarginine), we recently introduced vancomycin conjugates that effectively eradicate Gram-positive biofilm bacteria, persister cells and vancomycin-resistant enterococci (with V-r8, vancomycin-octaarginine), and Gram-negative pathogens (with V-R, vancomycin-arginine). Having shown previously that the spatial array (linear versus dendrimeric) of multiple guanidinium groups affects cell permeation, we report here for the first time vancomycin conjugates with dendrimerically displayed guanidinium groups that exhibit superior efficacy and breadth, presenting the best activity of V-r8 and V-R in single broad-spectrum compounds active against ESKAPE pathogens. Mode-of-action studies reveal cell-surface activity and enhanced vancomycin-like killing. The vancomycin-polyguanidino dendrimer conjugates exhibit no acute mammalian cell toxicity or hemolytic activity. Our study introduces a new class of broad-spectrum vancomycin derivatives and a general strategy to improve or expand antibiotic performance through combined mode-of-action and function-oriented design studies.
Collapse
Affiliation(s)
- Madeline B Chosy
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jiuzhi Sun
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Harrison P Rahn
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Xinyu Liu
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jasna Brčić
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Paul A Wender
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
3
|
Solyev PN, Isakova EB, Olsufyeva EN. Antibacterial Conjugates of Kanamycin A with Vancomycin and Eremomycin: Biological Activity and a New MS-Fragmentation Pattern of Cbz-Protected Amines. Antibiotics (Basel) 2023; 12:antibiotics12050894. [PMID: 37237799 DOI: 10.3390/antibiotics12050894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
A significant increase of microbial resistance to glycopeptides (especially vancomycin-resistant enterococci and Staphylococcus aureus) prompted researchers to design new semisynthetic glycopeptide derivatives, such as dual-action antibiotics that contain a glycopeptide molecule and an antibacterial agent of a different class. We synthesized novel dimeric conjugates of kanamycin A with glycopeptide antibiotics, vancomycin and eremomycin. Using tandem mass spectrometry fragmentation, UV, IR, and NMR spectral data, it was unequivocally proven that the glycopeptide is attached to the kanamycin A molecule at the position 1 of 2-deoxy-D-streptamine. New MS fragmentation patterns for N-Cbz-protected aminoglycosides were discovered. It was found that the resulting conjugates are active against Gram-positive bacteria, and some are active against vancomycin-resistant strains. Conjugates of two different classes can serve as dual-target antimicrobial candidates for further investigation and improvement.
Collapse
Affiliation(s)
- Pavel N Solyev
- Engelhardt Institute of Molecular Biology, 32 Vavilov St., 119991 Moscow, Russia
| | - Elena B Isakova
- Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya St., 119021 Moscow, Russia
| | - Evgenia N Olsufyeva
- Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya St., 119021 Moscow, Russia
| |
Collapse
|
4
|
Jiang F, Cai C, Gao L, Su X, Han S. Peptidoglycan-Directed Chemical Ligation for Selective Inhibition on Gram-Positive Bacteria. ACS OMEGA 2023; 8:2485-2490. [PMID: 36687063 PMCID: PMC9850734 DOI: 10.1021/acsomega.2c06964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Microbicides with distinct antibacterial mechanisms show potential to combat multi-drug resistance bacteria. We herein report peptidoglycan-directed chemical ligation (PGCL) between alkyne-bearing vancomycin and an azide-tagged cationic polymer. The former binds peptidoglycan and inhibits peptidoglycan crosslinking, while the latter interferes the integrity of the bacterial membrane. PGCL results in enhanced bactericidal activity against Gram-positive Staphylococcus aureus (S. aureus) over Gram-negative Escherichia coli (E. coli). These data indicate the potential of PGCL to selectively and synergistically inhibit Gram-positive pathogens via dual modality antibacterial mechanisms of peptidoglycan-inhibiting antibiotics and bacterial membrane-disrupting polycations.
Collapse
Affiliation(s)
- Feng Jiang
- Department
of Chemical Biology, College of Chemistry and Chemical Engineering,
State Key Laboratory for Physical Chemistry of Solid Surfaces, State
Key Laboratory of Cellular Stress Biology, the Key Laboratory for
Chemical Biology of Fujian Province, and the MOE Key Laboratory of
Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen 361005, China
| | - Chengteng Cai
- Department
of Chemical Biology, College of Chemistry and Chemical Engineering,
State Key Laboratory for Physical Chemistry of Solid Surfaces, State
Key Laboratory of Cellular Stress Biology, the Key Laboratory for
Chemical Biology of Fujian Province, and the MOE Key Laboratory of
Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen 361005, China
| | - Lei Gao
- Department
of Chemical Biology, College of Chemistry and Chemical Engineering,
State Key Laboratory for Physical Chemistry of Solid Surfaces, State
Key Laboratory of Cellular Stress Biology, the Key Laboratory for
Chemical Biology of Fujian Province, and the MOE Key Laboratory of
Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen 361005, China
| | - Xinhui Su
- PET
center, Department of Nuclear Medicine, The First Affiliated Hospital,
College of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Shoufa Han
- Department
of Chemical Biology, College of Chemistry and Chemical Engineering,
State Key Laboratory for Physical Chemistry of Solid Surfaces, State
Key Laboratory of Cellular Stress Biology, the Key Laboratory for
Chemical Biology of Fujian Province, and the MOE Key Laboratory of
Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen 361005, China
| |
Collapse
|
5
|
Belakhov VV. Polyfunctional Drugs: Search, Development, Use in Medical Practice, and Environmental Aspects of Preparation and Application (A Review). RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222130047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
6
|
Smith N, Quan D, Nagalingam G, Triccas JA, Rendina LM, Rutledge PJ. Carborane clusters increase the potency of bis-substituted cyclam derivatives against Mycobacterium tuberculosis. RSC Med Chem 2022; 13:1234-1238. [PMID: 36325397 PMCID: PMC9579921 DOI: 10.1039/d2md00150k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/28/2022] [Indexed: 08/04/2023] Open
Abstract
Bis-substituted cyclam derivatives have recently emerged as a promising new class of antibacterial agents, displaying excellent activity against drug-resistant Mycobacterium tuberculosis (Mtb) and in vivo efficacy in a zebrafish assay. Herein we report the synthesis and biological activity of new carborane derivatives within this class of antitubercular compounds. The resulting carborane-cyclam conjugates incorporating either hydrophobic closo-1,2-carborane or anionic, hydrophilic nido-7,8-carborane clusters display promising activity in an antibacterial assay employing the virulent Mtb strain H37Rv. The most active of these carborane derivatives exhibit MIC50 values of <1 μM, making them the most active compounds in this unique class of antibacterial cyclams reported to date.
Collapse
Affiliation(s)
- Nicholas Smith
- School of Chemistry, The University of Sydney Sydney NSW 2006 Australia +61 2 9351 5020 +61 2 9351 4781
| | - Diana Quan
- Sydney Institute of Infectious Diseases and Charles Perkins Centre, The University of Sydney Sydney NSW 2006 Australia
- School of Medical Sciences, The University of Sydney Sydney NSW 2006 Australia
| | - Gayathri Nagalingam
- Sydney Institute of Infectious Diseases and Charles Perkins Centre, The University of Sydney Sydney NSW 2006 Australia
- School of Medical Sciences, The University of Sydney Sydney NSW 2006 Australia
| | - James A Triccas
- Sydney Institute of Infectious Diseases and Charles Perkins Centre, The University of Sydney Sydney NSW 2006 Australia
- School of Medical Sciences, The University of Sydney Sydney NSW 2006 Australia
| | - Louis M Rendina
- School of Chemistry, The University of Sydney Sydney NSW 2006 Australia +61 2 9351 5020 +61 2 9351 4781
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney Sydney NSW 2006 Australia
| | - Peter J Rutledge
- School of Chemistry, The University of Sydney Sydney NSW 2006 Australia +61 2 9351 5020 +61 2 9351 4781
| |
Collapse
|
7
|
Evaluation of Toxic Properties of New Glycopeptide Flavancin on Rats. Pharmaceuticals (Basel) 2022; 15:ph15060661. [PMID: 35745578 PMCID: PMC9228439 DOI: 10.3390/ph15060661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
Glycopeptide antibiotics have side effects that limit their clinical use. In view of this, the development of glycopeptides with improved chemotherapeutic properties remains the main direction in the search for new antibacterial drugs. The objective of this study was to evaluate the toxicological characteristics of new semi-synthetic glycopeptide flavancin. Acute and chronic toxicity of antibiotic was evaluated in Wistar rats. The medium lethal dose (LD50) and the maximum tolerated doses (MTD) were calculated by the method of Litchfield and Wilcoxon. In the chronic toxicity study, the treatment regimen consisted of 15 daily intraperitoneal injections using two dosage levels: 6 and 10 mg/kg/day. Total doses were equivalent to MTD or LD50 of flavancin, respectively. The study included assessment of the body weight, hematological parameters, blood biochemical parameters, urinalysis, and pathomorphological evaluation of the internal organs. The results of the study demonstrated that no clinical-laboratory signs of toxicity were found after 15 daily injections of flavancin at a total dose close to the MTD or LD50. The pathomorphological study did not reveal any lesions on the organ structure of animals after low-dose administration of flavancin. Thus, flavancin favorably differs in terms of toxicological properties from the glycopeptides currently used in the clinic.
Collapse
|
8
|
Dhawan B, Akhter G, Hamid H, Kesharwani P, Alam MS. Benzoxaboroles: New emerging and versatile scaffold with a plethora of pharmacological activities. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Acharya Y, Bhattacharyya S, Dhanda G, Haldar J. Emerging Roles of Glycopeptide Antibiotics: Moving beyond Gram-Positive Bacteria. ACS Infect Dis 2022; 8:1-28. [PMID: 34878254 DOI: 10.1021/acsinfecdis.1c00367] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glycopeptides, a class of cell wall biosynthesis inhibitors, have been the antibiotics of choice against drug-resistant Gram-positive bacterial infections. Their unique mechanism of action involving binding to the substrate of cell wall biosynthesis and substantial longevity in clinics makes this class of antibiotics an attractive choice for drug repurposing and reprofiling. However, resistance to glycopeptides has been observed due to alterations in the substrate, cell wall thickening, or both. The emergence of glycopeptide resistance has resulted in the development of synthetic and semisynthetic glycopeptide analogues to target acquired resistance. Recent findings demonstrate that these derivatives, along with some of the FDA approved glycopeptides have been shown to have antimicrobial activity against Gram-negative bacteria, Mycobacteria, and viruses thus expanding their spectrum of activity across the microbial kingdom. Additional mechanisms of action and identification of novel targets have proven to be critical in broadening the spectrum of activity of glycopeptides. This review focuses on the applications of glycopeptides beyond their traditional target group of Gram-positive bacteria. This will aid in making the scientific community aware about the nontraditional activity profiles of glycopeptides, identify the existing loopholes, and further explore this antibiotic class as a potential broad-spectrum antimicrobial agent.
Collapse
Affiliation(s)
- Yash Acharya
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Shaown Bhattacharyya
- Biochemistry and Molecular Biology Program, Departments of Chemistry and Biology, College of Arts and Science, Boston University, Boston, Massachusetts 02215, United States
| | - Geetika Dhanda
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
10
|
Zeiders SM, Chmielewski J. Antibiotic-cell-penetrating peptide conjugates targeting challenging drug-resistant and intracellular pathogenic bacteria. Chem Biol Drug Des 2021; 98:762-778. [PMID: 34315189 DOI: 10.1111/cbdd.13930] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/09/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022]
Abstract
The failure to treat everyday bacterial infections is a current threat as pathogens are finding new ways to thwart antibiotics through mechanisms of resistance and intracellular refuge, thus rendering current antibiotic strategies ineffective. Cell-penetrating peptides (CPPs) are providing a means to improve antibiotics that are already approved for use. Through coadministration and conjugation of antibiotics with CPPs, improved accumulation and selectivity with alternative and/or additional modes of action against infections have been observed. Herein, we review the recent progress of this antibiotic-cell-penetrating peptide strategy in combatting sensitive and drug-resistant pathogens. We take a closer look into the specific antibiotics that have been enhanced, and in some cases repurposed as broad-spectrum drugs. Through the addition and conjugation of cell-penetrating peptides to antibiotics, increased permeation across mammalian and/or bacterial membranes and a broader range in bacterial selectivity have been achieved.
Collapse
Affiliation(s)
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
11
|
Sarkar P, Basak D, Mukherjee R, Bandow JE, Haldar J. Alkyl-Aryl-Vancomycins: Multimodal Glycopeptides with Weak Dependence on the Bacterial Metabolic State. J Med Chem 2021; 64:10185-10202. [PMID: 34233118 DOI: 10.1021/acs.jmedchem.1c00449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Resistance to last-resort antibiotics such as vancomycin for Gram-positive bacterial infections necessitates the development of new therapeutics. Furthermore, the ability of bacteria to survive antibiotic therapy through formation of biofilms and persister cells complicates treatment. Toward this, we report alkyl-aryl-vancomycins (AAVs), with high potency against vancomycin-resistant enterococci and staphylococci. Unlike vancomycin, the lead compound AAV-qC10 was bactericidal and weakly dependent on bacterial metabolism. This resulted in complete eradication of non-growing cells of MRSA and disruption of its biofilms. In addition to inhibiting cell wall biosynthesis like vancomycin, AAV-qC10 also depolarizes and permeabilizes the membrane. More importantly, the compound delocalized the cell division protein MinD, thereby impairing bacterial growth through multiple pathways. The potential of AAV-qC10 is exemplified by its superior efficacy against MRSA in a murine thigh infection model as compared to vancomycin. This work paves the way for structural optimization and drug development for combating drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Paramita Sarkar
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Debajyoti Basak
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Riya Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Julia E Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, Bochum 44780, Germany
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
12
|
Main trends in the design of semi-synthetic antibiotics of a new generation. RUSSIAN CHEMICAL REVIEWS 2020. [PMCID: PMC7149660 DOI: 10.1070/rcr4892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
This review summarizes main advances achieved by Russian researchers in the synthesis and characterization of semi-synthetic antibiotics of a new generation in the period from 2004 to 2019. The following classes of compounds are considered as the basis for modification: polycyclic antibacterial glycopeptides of the vancomycin group, classical macrolides, antifungal polyene macrolides, the antitumour antibiotic olivomycin A, antitumour anthracyclines and broad-spectrum antibiotics, in particular, oligomycin A, heliomycin and some other. Main trends in the design of modern anti-infective and antitumour agents over this period are considered in relation to original natural antibiotics, which have been independently discovered by Russian researchers. It is shown that a new type of hybrid structures can, in principle, be synthesized based on glycopeptides, macrolides and other antibiotics, including heterodimers containing a new benzoxaborole pharmacophore. The review addresses the influence of the length of the spacer between two antibiotic molecules on the biological activity of hybrid structures. A combination of genetic engineering techniques and methods of organic synthesis is shown to be useful for the design of new potent antifungal antibiotics based on polyenes of the amphotericin B group. Many new semi-synthetic analogues exhibit important biological properties, such as a broad spectrum of activity and low toxicity. Emphasis is given to certain aspects related to investigation of a broad range of biological activity and mechanisms of action of new derivatives. The bibliography includes 101 references.
Collapse
|
13
|
Tevyashova AN, Bychkova EN, Korolev AM, Isakova EB, Mirchink EP, Osterman IA, Erdei R, Szücs Z, Batta G. Synthesis and evaluation of biological activity for dual-acting antibiotics on the basis of azithromycin and glycopeptides. Bioorg Med Chem Lett 2018; 29:276-280. [PMID: 30473176 DOI: 10.1016/j.bmcl.2018.11.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/15/2018] [Accepted: 11/18/2018] [Indexed: 11/27/2022]
Abstract
One of the promising directions of the combined approach is the design of dual-acting antibiotics - heterodimeric structures on the basis of antimicrobial agents of different classes. In this study a novel series of azithromycin-glycopeptide conjugates were designed and synthesized. The structures of the obtained compounds were confirmed using NMR spectroscopy and mass spectrometry data including MS/MS analysis. All novel hybrid antibiotics were found to be either as active as azithromycin and vancomycin against Gram-positive bacterial strains or have superior activity in comparison with their parent antibiotics. One compound, eremomycin-azithromycin conjugate 16, demonstrated moderate activity against Enterococcus faecium and Enterococcus faecalis strains resistant to vancomycin, and equal to vancomycin's activity for the treatment of mice with Staphylococcus aureus sepsis.
Collapse
Affiliation(s)
- Anna N Tevyashova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, Russia; D. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow, Russia.
| | - Elena N Bychkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, Russia
| | | | - Elena B Isakova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, Russia
| | - Elena P Mirchink
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow, Russia
| | - Ilya A Osterman
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, Moscow, Russia; Centre for Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Réka Erdei
- Department of Organic Chemistry, University of Debrecen, Egyetem ter 1, Debrecen, 4032, Hungary
| | - Zsolt Szücs
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem ter 1, Debrecen 4032, Hungary
| | - Gyula Batta
- Department of Organic Chemistry, University of Debrecen, Egyetem ter 1, Debrecen, 4032, Hungary
| |
Collapse
|
14
|
Dhanda G, Sarkar P, Samaddar S, Haldar J. Battle against Vancomycin-Resistant Bacteria: Recent Developments in Chemical Strategies. J Med Chem 2018; 62:3184-3205. [DOI: 10.1021/acs.jmedchem.8b01093] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Geetika Dhanda
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Paramita Sarkar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Sandip Samaddar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
15
|
Tevyashova AN, Korolev AM, Mirchink EP, Isakova EB, Osterman IA. Synthesis and evaluation of biological activity of benzoxaborole derivatives of azithromycin. J Antibiot (Tokyo) 2018; 72:22-33. [DOI: 10.1038/s41429-018-0107-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/03/2018] [Accepted: 09/25/2018] [Indexed: 11/09/2022]
|
16
|
Olsufyeva EN, Shchekotikhin AE, Bychkova EN, Pereverzeva ER, Treshalin ID, Mirchink EP, Isakova EB, Chernobrovkin MG, Kozlov RS, Dekhnich AV, Preobrazhenskaya MN. Eremomycin pyrrolidide: a novel semisynthetic glycopeptide with improved chemotherapeutic properties. Drug Des Devel Ther 2018; 12:2875-2885. [PMID: 30237697 PMCID: PMC6137948 DOI: 10.2147/dddt.s173923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Development of new semisynthetic glycopeptides with improved antibacterial efficacy and reduced pseudoallergic reactions. METHODS Semisynthetic glycopeptides 3-6 were synthesized from vancomycin (1) or eremomycin (2) by the condensation with pyrrolidine or piperidine. The minimum inhibitory concentration (MIC) for the new derivatives was measured by the broth micro-dilution method on a panel of clinical isolates of Staphylococcus and Enterococcus. Acute toxicity (50% lethal dose, maximum tolerated doses), antibacterial efficacy on model of systemic bacterial infection with S. aureus and pseudoallergic inflammatory reaction (on concanavalin A) of eremomycin pyrrolidide (5) were evaluated in mice according to standard procedures. RESULTS The eremomycin pyrrolidide (5) was the most active compound and showed a high activity against Gram-positive bacteria: vancomycin-susceptible staphylococci and enterococci (minimum inhibitory concentrations [MICs] 0.13-0.25 mg/L), as well as vancomycin-intermediate resistant Staphylococcus aureus (MICs 1 mg/L). Antimicrobial susceptibility tested on a panel of 676 isolates showed that 5 had similar activity for the genera Staphylococcus and Enterococcus with MIC90=0.5 mg/L, while vancomycin had MIC90=1-2 mg/L. The number of resistant strains of Enterococcus faecium (vancomycin-resistant enterococci) (MIC =64 mg/L) with this value was 7 (8%) for vancomycin (1) and 0 for the compound 5. In vivo comparative studies in a mouse model of systemic bacterial infection with S. aureus demonstrated that the efficacy of 5 was notably higher than that of the original antibiotics 1 and 2. In contrast to 1, compound 5 did not induce pseudoallergic inflammatory reaction (on concanavalin A). CONCLUSION The new semisynthetic derivative eremomycin pyrrolidide (5) has high activity against staphylococci and enterococci including vancomycin-resistant strains. Compound 5 has a higher efficacy in a model of staphylococcal sepsis than vancomycin (1) or eremomycin (2). In striking contrast to natural antibiotics, the novel derivative 5 does not induce a pseudoallergic inflammatory reaction to concanavalin A and therefore has no histamine release activity. These results indicate the advantages of a new semisynthetic glycopeptide antibiotic eremomycin pyrrolidide (5) which may be a prospective antimicrobial agent for further pre-clinical and clinical evaluations.
Collapse
Affiliation(s)
| | - Andrey E Shchekotikhin
- Gause Institute of New Antibiotics, Moscow, Russia,
- Mendeleyev University of Chemical Technology, Moscow, Russia
| | | | | | | | | | | | | | - Roman S Kozlov
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, Smolensk, Russia
| | - Andrey V Dekhnich
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, Smolensk, Russia
| | | |
Collapse
|
17
|
Mishra NM, Stolarzewicz I, Cannaerts D, Schuermans J, Lavigne R, Looz Y, Landuyt B, Schoofs L, Schols D, Paeshuyse J, Hickenbotham P, Clokie M, Luyten W, Van der Eycken EV, Briers Y. Iterative Chemical Engineering of Vancomycin Leads to Novel Vancomycin Analogs With a High in Vitro Therapeutic Index. Front Microbiol 2018; 9:1175. [PMID: 29930540 PMCID: PMC6001238 DOI: 10.3389/fmicb.2018.01175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/15/2018] [Indexed: 12/11/2022] Open
Abstract
Vancomycin is a glycopeptide antibiotic that inhibits transpeptidation during cell wall synthesis by binding to the D-Ala-D-Ala termini of lipid II. For long, it has been used as a last resort antibiotic. However, since the emergence of the first vancomycin-resistant enterococci in 1987, vancomycin resistance has become widespread, especially in hospitals. We have synthesized and evaluated 110 vancomycin analogs modified at the C-terminal carboxyl group of the heptapeptide moiety with R2NHR1NH2 substituents. Through iterative optimizations of the substituents, we identified vancomycin analogs that fully restore (or even exceed) the original inhibitory activity against vancomycin-resistant enterococci (VRE), vancomycin-intermediate (VISA) and vancomycin-resistant Staphylococcus aureus (VRSA) strains. The best analogs have improved growth inhibitory activity and in vitro therapeutic indices against a broad set of VRE and methicillin-resistant S. aureus (MRSA) isolates. They also exceed the activity of vancomycin against Clostridium difficile ribotypes. Vanc-39 and Vanc-42 have a low probability to provoke antibiotic resistance, and overcome different vancomycin resistance mechanisms (VanA, VanB, and VanC1).
Collapse
Affiliation(s)
- Nigam M. Mishra
- Laboratory for Organic and Microwave-Assisted Chemistry, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Izabela Stolarzewicz
- Laboratory for Organic and Microwave-Assisted Chemistry, Department of Chemistry, KU Leuven, Leuven, Belgium
- Department of Chemistry, Warsaw University of Life Sciences, Warsaw, Poland
| | - David Cannaerts
- Laboratory for Organic and Microwave-Assisted Chemistry, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Joris Schuermans
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Yannick Looz
- Laboratory of Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium
| | - Bart Landuyt
- Laboratory of Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium
| | - Liliane Schoofs
- Laboratory of Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Rega Institute, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Jan Paeshuyse
- Laboratory for Host Pathogen Interactions, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Peter Hickenbotham
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Martha Clokie
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Walter Luyten
- Laboratory of Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Erik V. Van der Eycken
- Laboratory for Organic and Microwave-Assisted Chemistry, Department of Chemistry, KU Leuven, Leuven, Belgium
- Department of Organic Chemistry, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Yves Briers
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Gamrat JM, Mancini G, Burke SJ, Colandrea RC, Sadowski NR, Figula BC, Tomsho JW. Protection of the Benzoxaborole Moiety: Synthesis and Functionalization of Zwitterionic Benzoxaborole Complexes. J Org Chem 2018; 83:6193-6201. [PMID: 29724096 DOI: 10.1021/acs.joc.8b00677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The synthesis and utility of three benzoxaborole protecting groups are reported. These protecting groups improve organic solubility and allow otherwise incompatible reactions (oxidations, substitutions, and mild reductions) to be achieved in the presence of the benzoxaborole moiety. 3-( N, N-Dimethylamino)-1-propanol was determined to be useful in one-step sequences and is readily cleaved upon workup. Two other groups, N-methylsalicylidenimine and 2-[1-(methylimino)ethyl]phenol, are suitable for multistep syntheses. Deprotection with mild aqueous acid allows for chromatography-free isolation of the benzoxaborole in high yields.
Collapse
Affiliation(s)
- James M Gamrat
- Department of Chemistry & Biochemistry , University of the Sciences in Philadelphia , Philadelphia , Pennsylvania 19104 , United States
| | - Giulia Mancini
- Department of Chemistry & Biochemistry , University of the Sciences in Philadelphia , Philadelphia , Pennsylvania 19104 , United States
| | - Sarah J Burke
- Department of Chemistry & Biochemistry , University of the Sciences in Philadelphia , Philadelphia , Pennsylvania 19104 , United States
| | - Rebecca C Colandrea
- Department of Chemistry & Biochemistry , University of the Sciences in Philadelphia , Philadelphia , Pennsylvania 19104 , United States
| | - Nicholas R Sadowski
- Department of Chemistry & Biochemistry , University of the Sciences in Philadelphia , Philadelphia , Pennsylvania 19104 , United States
| | - Bryan C Figula
- Department of Chemistry & Biochemistry , University of the Sciences in Philadelphia , Philadelphia , Pennsylvania 19104 , United States
| | - John W Tomsho
- Department of Chemistry & Biochemistry , University of the Sciences in Philadelphia , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
19
|
Nocentini A, Supuran CT, Winum JY. Benzoxaborole compounds for therapeutic uses: a patent review (2010- 2018). Expert Opin Ther Pat 2018; 28:493-504. [PMID: 29727210 DOI: 10.1080/13543776.2018.1473379] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Benzoxaborole is a versatile boron-heterocyclic scaffold which has found in the last 10 years a broad spectrum of applications in medicinal chemistry, due to its physicochemical and drug-like properties. Use of benzoxaborole moiety in the design of compounds led to the discovery of new classes of anti-bacterial, anti-fungal, anti-protozoal, anti-viral as well as anti-inflammatory agents with interesting drug development perspectives. AREAS COVERED This article reviews the patent literature as well as chemistry literature during the period 2010-2018 where in several benzoxaborole derivatives with therapeutic options were reported. EXPERT OPINION Two benzoxaborole derivatives are already clinically used for the treatment of onychomycosis (tavaborole) and atopic dermatitis (crisaborole), with several others in various phases of clinical trials. By inhibiting enzymes essential in the life cycle of fungal, protozoan, bacterial and viral pathogens, it is probable that other compounds may soon enter the armamentarium of anti-infective agents. On the other hand, phosphodiesterase 4 seems to be the human target responsible of the anti-inflammatory action of some benzoxaboroles. The chemical versatility, peculiar mechanism of action related to the electron deficient nature of the boron atom, and ease of preparation make benzoxaboroles a highly interesting field for the pharmaceutical industry.
Collapse
Affiliation(s)
- Alessio Nocentini
- a Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences , University of Florence, Polo Scientifico , Firenze , Italy.,b Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM , Université de Montpellier , Montpellier , France
| | - Claudiu T Supuran
- a Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences , University of Florence, Polo Scientifico , Firenze , Italy
| | - Jean-Yves Winum
- b Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM , Université de Montpellier , Montpellier , France
| |
Collapse
|
20
|
Abstract
![]()
Glycopeptide
antibiotics (GPAs) are a key weapon in the fight against drug resistant
bacteria, with vancomycin still a mainstream therapy against serious
Gram-positive infections more than 50 years after it was first introduced.
New, more potent semisynthetic derivatives that have entered the clinic,
such as dalbavancin and oritavancin, have superior pharmacokinetic
and target engagement profiles that enable successful treatment of
vancomycin-resistant infections. In the face of resistance development,
with multidrug resistant (MDR) S. pneumoniae and methicillin-resistant Staphylococcus aureus (MRSA) together causing 20-fold more infections than all MDR Gram-negative
infections combined, further improvements are desirable to ensure
the Gram-positive armamentarium is adequately maintained for future
generations. A range of modified glycopeptides has been generated
in the past decade via total syntheses, semisynthetic modifications
of natural products, or biological engineering. Several of these
have undergone extensive characterization with demonstrated in vivo efficacy, good PK/PD profiles, and no reported preclinical
toxicity; some may be suitable for formal preclinical development.
The natural product monobactam, cephalosporin, and β-lactam
antibiotics all spawned multiple generations of commercially and clinically
successful semisynthetic derivatives. Similarly, next-generation glycopeptides
are now technically well positioned to advance to the clinic, if sufficient
funding and market support returns to antibiotic development.
Collapse
Affiliation(s)
- Mark A. T. Blaskovich
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| | - Karl A. Hansford
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| | - Mark S. Butler
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| | - ZhiGuang Jia
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| | - Alan E. Mark
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| | - Matthew A. Cooper
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| |
Collapse
|
21
|
Yang F, Zhu M, Zhang J, Zhou H. Synthesis of biologically active boron-containing compounds. MEDCHEMCOMM 2017; 9:201-211. [PMID: 30108914 DOI: 10.1039/c7md00552k] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/28/2017] [Indexed: 01/03/2023]
Abstract
Boron-containing compounds which possess unique and attractive properties have received increasing attention from the pharmaceutical industry and academia recently. They have shown interesting and useful biological activities, including antibacterial, antifungal, antiparasitic, antiviral, and anti-inflammatory activities. In this review, the synthetic strategies for various boron-containing compounds, including peptidyl boronic acids, benzoxaboroles, benzoxaborines, benzodiazaborines, amine carboxyboranes, and amine cyanoboranes are summarized. Representative structures of each structural class and recently developed biologically active boron-containing compounds are used as examples in this review.
Collapse
Affiliation(s)
- Fei Yang
- State Key Laboratory of Microbial Metabolism , School of Pharmacy , Shanghai Jiao Tong University , 800 Dongchuan Road, Minhang District , Shanghai 200240 , China . ; ; Tel: +86 21 34206721
| | - Mingyan Zhu
- State Key Laboratory of Microbial Metabolism , School of Pharmacy , Shanghai Jiao Tong University , 800 Dongchuan Road, Minhang District , Shanghai 200240 , China . ; ; Tel: +86 21 34206721
| | - Jinyi Zhang
- State Key Laboratory of Microbial Metabolism , School of Pharmacy , Shanghai Jiao Tong University , 800 Dongchuan Road, Minhang District , Shanghai 200240 , China . ; ; Tel: +86 21 34206721
| | - Huchen Zhou
- State Key Laboratory of Microbial Metabolism , School of Pharmacy , Shanghai Jiao Tong University , 800 Dongchuan Road, Minhang District , Shanghai 200240 , China . ; ; Tel: +86 21 34206721
| |
Collapse
|
22
|
Design, Synthesis and X-ray Crystal Structure of Iodinated Benzoboroxole Derivatives by Consecutive Metal-Iodine Exchange of 3,4,5-Triiodoanisole. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700989] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Lapa GB, Mirchink EP, Isakova EB, Preobrazhenskaya MN. Two approaches to the use of benzo[c][1,2]oxaboroles as active fragments for synthetic transformation of clarithromycin . J Enzyme Inhib Med Chem 2017; 32:452-456. [PMID: 28097898 PMCID: PMC6009856 DOI: 10.1080/14756366.2016.1261129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clarithromycin (active against Gram positive infections) and 1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborole derivatives (effective for Gram negative microbes) are the ligands of bacterial RNA. The antimicrobial activities of these benzoxaboroles linked with clarithromycin at 9 or 4″ position were compared. Two synthetic pathways for these conjugates were elaborated. First pathway explored the substitution of the C-9 carbonyl group of macrolactone’s cycle via oxime linker, the second direction used the modification of the 4″-O-group of cladinose via the formation of carbamates of benzoxaboroles. 4″-O-(3-S-(1-Hydroxy-1,3-dihydro-benzo[c][1,2]oxaborole)-methyl-carbamoyl-clarithromycin showed twofold decrease in MICs for S. epidermidis and S. pneumoniae than clarithromycin. 4″-O-Modified clarithromycin demonstrated an efficacy against Gram positive strains only. Compounds with C-9 substitution were more active than 4″-O-substituted antibiotics for susceptible strains E. coli tolC and did not exceed the activity of initial antibiotics.
Collapse
Affiliation(s)
- Gennady B Lapa
- a Blokhin Cancer Center , Moscow , Russia.,b Pirogov Russian National Research Medical University (RNRMU) , Moscow , Russia.,c Gause Institute of New Antibiotics , Moscow , Russian Federation
| | - Elena P Mirchink
- c Gause Institute of New Antibiotics , Moscow , Russian Federation
| | - Elena B Isakova
- c Gause Institute of New Antibiotics , Moscow , Russian Federation
| | | |
Collapse
|
24
|
St-Coeur PD, Kinley S, Vogels CM, Decken A, Jr. Morin P, Westcott SA. Synthesis, characterization, and anticancer properties of iminophosphineplatinum(II) complexes containing boronate esters. CAN J CHEM 2017. [DOI: 10.1139/cjc-2016-0570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three new iminophosphines containing pinacol-derived boronate esters have been prepared and ligated to dichloridoplatinum(II) fragments. All compounds have been characterized fully, including an X-ray diffraction study carried out for the platinum complex 8, which is derived from 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline. These three new platinum complexes, along with the non-boron containing control, have been examined for their initial cytotoxic properties against two glioma cell lines using the MTT method.
Collapse
Affiliation(s)
- Patrick-Denis St-Coeur
- Département de chimie et biochimie, Université de Moncton, Campus de Moncton, Moncton, NB E1A 3E9, Canada
| | - Samantha Kinley
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Christopher M. Vogels
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Andreas Decken
- Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Pier Jr. Morin
- Département de chimie et biochimie, Université de Moncton, Campus de Moncton, Moncton, NB E1A 3E9, Canada
| | - Stephen A. Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| |
Collapse
|
25
|
Saito H, Otsuka S, Nogi K, Yorimitsu H. Nickel-Catalyzed Boron Insertion into the C2–O Bond of Benzofurans. J Am Chem Soc 2016; 138:15315-15318. [DOI: 10.1021/jacs.6b10255] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hayate Saito
- Department of Chemistry,
Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shinya Otsuka
- Department of Chemistry,
Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Keisuke Nogi
- Department of Chemistry,
Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideki Yorimitsu
- Department of Chemistry,
Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
26
|
Abstract
INTRODUCTION There is a growing need for new antibacterial agents, but success in development of antibiotics in recent years has been limited. This has led researchers to investigate novel approaches to finding compounds that are effective against multi-drug resistant bacteria, and that delay onset of resistance. One such strategy has been to link antibiotics to produce hybrids designed to overcome resistance mechanisms. AREAS COVERED The concept of dual-acting hybrid antibiotics was introduced and reviewed in this journal in 2010. In the present review the authors sought to discover how clinical candidates described had progressed, and to examine how the field has developed. In three sections the authors cover the clinical progress of hybrid antibiotics, novel agents produced from hybridisation of two or more small-molecule antibiotics, and novel agents produced from hybridisation of antibiotics with small-molecules that have complementary activity. EXPERT OPINION Many key questions regarding dual-acting hybrid antibiotics remain to be answered, and the proposed benefits of this approach are yet to be demonstrated. While Cadazolid in particular continues to progress in the clinic, suggesting that there is promise in hybridisation through covalent linkage, it may be that properties other than antibacterial activity are key when choosing a partner molecule.
Collapse
Affiliation(s)
| | - Ian A Yule
- a Medicinal Chemistry , Evotec (UK) Ltd , Abingdon , UK
| |
Collapse
|
27
|
Tevyashova AN, Korolev AM, Trenin AS, Dezhenkova LG, Shtil AA, Polshakov VI, Savelyev OY, Olsufyeva EN. New conjugates of polyene macrolide amphotericin B with benzoxaboroles: synthesis and properties. J Antibiot (Tokyo) 2016; 69:549-60. [DOI: 10.1038/ja.2016.34] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/05/2016] [Accepted: 02/19/2016] [Indexed: 12/31/2022]
|
28
|
Patterson AE, Flewelling AJ, Clark TN, Geier SJ, Vogels CM, Masuda JD, Gray CA, Westcott SA. Antimicrobial and antimycobacterial activities of aliphatic amines derived from vanillin. CAN J CHEM 2015. [DOI: 10.1139/cjc-2015-0400] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ten lipophilic amines were prepared from the reductive amination of vanillin and the corresponding primary amines using sodium borohydride in methanol. All compounds have been obtained elementally pure and an X-ray diffraction study on the 4-n-butylaniline derivative has confirmed the molecular structure. Whilst the overall antibiotic activity of the derivatives was low, some of these compounds, particularly the boronate ester 2-methoxy-4-((2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenylamino)methyl)phenol (7), showed a promising degree of antimycobacterial activity against Mycobacterium tuberculosis H37Ra, where activity seemed to vary by the position of the boron substitution on the aniline ring.
Collapse
Affiliation(s)
- Alyssa E. Patterson
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Andrew J. Flewelling
- Department of Biology, University of New Brunswick, Saint John, NB E2L 4L5, Canada
- Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Trevor N. Clark
- Department of Biology, University of New Brunswick, Saint John, NB E2L 4L5, Canada
- Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Stephen J. Geier
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Christopher M. Vogels
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Jason D. Masuda
- Department of Chemistry, St. Mary’s University, Halifax, NS B3H 3C3, Canada
| | - Christopher A. Gray
- Department of Biology, University of New Brunswick, Saint John, NB E2L 4L5, Canada
- Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Stephen A. Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| |
Collapse
|
29
|
Cormier K, Curry RD, Betsch MP, Goguen JA, Vogels CM, Decken A, Turcotte S, Westcott SA. Synthesis, Characterization, and Anticancer Activities of Pyrogallol-Based Arylspiroborates. J Heterocycl Chem 2015. [DOI: 10.1002/jhet.2490] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kevin Cormier
- Département de chimie et biochimie; Université de Moncton; Campus de Moncton Moncton NB E1A 3E9 Canada
- Atlantic Cancer Research Institute; Moncton NB E1C 8X3 Canada
| | - R. Daniel Curry
- Department of Chemistry and Biochemistry; Mount Allison University; Sackville NB E4L 1G8 Canada
| | - Mitchel P. Betsch
- Department of Chemistry and Biochemistry; Mount Allison University; Sackville NB E4L 1G8 Canada
| | - Jeremy A. Goguen
- Department of Chemistry and Biochemistry; Mount Allison University; Sackville NB E4L 1G8 Canada
| | - Christopher M. Vogels
- Department of Chemistry and Biochemistry; Mount Allison University; Sackville NB E4L 1G8 Canada
| | - Andreas Decken
- Department of Chemistry; University of New Brunswick; Fredericton NB E3B 5A3 Canada
| | - Sandra Turcotte
- Département de chimie et biochimie; Université de Moncton; Campus de Moncton Moncton NB E1A 3E9 Canada
- Atlantic Cancer Research Institute; Moncton NB E1C 8X3 Canada
| | - Stephen A. Westcott
- Department of Chemistry and Biochemistry; Mount Allison University; Sackville NB E4L 1G8 Canada
| |
Collapse
|
30
|
Adamczyk-Woźniak A, Borys KM, Sporzyński A. Recent Developments in the Chemistry and Biological Applications of Benzoxaboroles. Chem Rev 2015; 115:5224-47. [DOI: 10.1021/cr500642d] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - Krzysztof M. Borys
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Andrzej Sporzyński
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
31
|
Tevyashova AN, Olsufyeva EN, Preobrazhenskaya MN. Design of dual action antibiotics as an approach to search for new promising drugs. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4448] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Zhu J, Wei Y, Lin D, Ou C, Xie L, Zhao Y, Huang W. One-pot synthesis of benzoxaborole derivatives from the palladium-catalyzed cross-coupling reaction of alkoxydiboron with unprotected o-bromobenzylalcohols. Org Biomol Chem 2015; 13:11362-8. [DOI: 10.1039/c5ob01781e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Under very mild conditions, functionalized benzoxaborole derivatives were prepared in good to excellent yields via a palladium-catalyzed Miyaura borylation reaction of readily available unprotected o-bromobenzylalcohols, and bis(pinacolato)diboron (B2pin2) without the assistance of an acid.
Collapse
Affiliation(s)
- Jianan Zhu
- Centre for Molecular Systems and Organic Devices (CMSOD)
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Ying Wei
- Centre for Molecular Systems and Organic Devices (CMSOD)
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Dongqing Lin
- Centre for Molecular Systems and Organic Devices (CMSOD)
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Changjin Ou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Linghai Xie
- Centre for Molecular Systems and Organic Devices (CMSOD)
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Yu Zhao
- Centre for Molecular Systems and Organic Devices (CMSOD)
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Wei Huang
- Centre for Molecular Systems and Organic Devices (CMSOD)
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| |
Collapse
|
33
|
Chemoinformatics for medicinal chemistry: in silico model to enable the discovery of potent and safer anti-cocci agents. Future Med Chem 2014; 6:2013-28. [DOI: 10.4155/fmc.14.136] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background: Gram-positive cocci are increasingly antibiotic-resistant bacteria responsible for causing serious diseases. Chemoinformatics can help to rationalize the discovery of more potent and safer antibacterial drugs. We have developed a chemoinformatic model for simultaneous prediction of anti-cocci activities, and profiles involving absorption, distribution, metabolism, elimination and toxicity (ADMET). Results: A dataset containing 48,874 cases from many different chemicals assayed under dissimilar experimental conditions was created. The best model displayed accuracies around 93% in both training and prediction (test) sets. Quantitative contributions of several fragments to the biological effects were calculated and analyzed. Multiple biological effects of the investigational drug JNJ-Q2 were correctly predicted. Conclusion: Our chemoinformatic model can be used as powerful tool for virtual screening of promising anti-cocci agents.
Collapse
|
34
|
Liu CT, Tomsho JW, Benkovic SJ. The unique chemistry of benzoxaboroles: current and emerging applications in biotechnology and therapeutic treatments. Bioorg Med Chem 2014; 22:4462-73. [PMID: 24864040 DOI: 10.1016/j.bmc.2014.04.065] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/21/2014] [Accepted: 04/30/2014] [Indexed: 12/25/2022]
Abstract
Benzoxaboroles have garnered much attention in recent years due to their diverse applications in bio-sensing technology, material science, and therapeutic intervention. Part of the reason arises from the benzoxaboroles' unique chemical properties, especially in comparison to their acyclic boronic acid counterparts. Furthermore, the low bio-toxicity combined with the high target specificity associated with benzoxaboroles make them very attractive as therapeutic agents. Herein, we provide an updated summary on the current knowledge of the fundamental chemical reactivity of benzoxaboroles, followed by highlighting their major applications reported to date.
Collapse
Affiliation(s)
- C Tony Liu
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, United States
| | - John W Tomsho
- Department of Chemistry & Biochemistry, University of the Sciences, 600 S. 43rd Street, Philadelphia, PA 19104-4495, United States.
| | - Stephen J Benkovic
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
35
|
Wieczorek D, Lipok J, Borys KM, Adamczyk-Woźniak A, Sporzyński A. Investigation of fungicidal activity of 3-piperazine-bis(benzoxaborole) and its boronic acid analogue. Appl Organomet Chem 2014. [DOI: 10.1002/aoc.3132] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dorota Wieczorek
- Faculty of Chemistry; Opole University; Oleska 48 45-052 Opole Poland
| | - Jacek Lipok
- Faculty of Chemistry; Opole University; Oleska 48 45-052 Opole Poland
| | - Krzysztof M. Borys
- Faculty of Chemistry; Warsaw University of Technology; Noakowskiego 3 00-664 Warsaw Poland
| | | | - Andrzej Sporzyński
- Faculty of Chemistry; Warsaw University of Technology; Noakowskiego 3 00-664 Warsaw Poland
| |
Collapse
|
36
|
|
37
|
|