1
|
Kappenberg YG, Nogara PA, Stefanello FS, Delgado CP, Rocha JBT, Zanatta N, Martins MAP, Bonacorso HG. 1,2,3-Triazolo[4,5-b]aminoquinolines: Design, synthesis, structure, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity, and molecular docking of novel modified tacrines. Bioorg Chem 2023; 139:106704. [PMID: 37453239 DOI: 10.1016/j.bioorg.2023.106704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/12/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023]
Abstract
An efficient [4 + 2] cyclization protocol to synthesize a series of twelve examples of 1,2,3-triazolo[4,5-b]aminoquinolines (5) as novel structurally modified tacrines was obtained by reacting readily accessible precursors (i.e., 3-alky(aryl)-5-amino-1,2,3-triazole-4-carbonitriles (3)) and selected cycloalkanones (4) of five-, six-, and seven-membered rings. We evaluated the AChE and BChE inhibitory activity of the novel modified tacrines 5, and the compound derivatives from cyclohexanone (4b) showed the best AChE and BChE inhibitory activities. Specifically, 1,2,3-triazolo[4,5-b]aminoquinolines 5bb obtained from 3-methyl-carbonitrile (3b) showed the highest AChE (IC50 = 12.01 μM), while 5ib from 3-sulfonamido-carbonitrile (3i) was the most significant inhibitor for BChE (IC50 = 1.78 μM). In general, the inhibitory potency of compound 5 was weaker than the pure tacrine reference, and our findings may help to design and develop novel anticholinesterase drugs based on modified tacrines.
Collapse
Affiliation(s)
- Yuri G Kappenberg
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Pablo A Nogara
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, 97105-900 - Santa Maria, RS, Brazil; Instituto Federal Sul-Rio-Grandense (IFSul), 96418-400- Bagé, RS, Brazil
| | - Felipe S Stefanello
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Cássia P Delgado
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, 97105-900 - Santa Maria, RS, Brazil
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, 97105-900 - Santa Maria, RS, Brazil
| | - Nilo Zanatta
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Marcos A P Martins
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Helio G Bonacorso
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
2
|
Design, synthesis, AChE/BChE inhibitory activity, and molecular docking of spiro[chromeno[4,3-b]thieno[3,2-e]pyridine]-7-amine tacrine hybrids. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Carreiras MDC, Marco-Contelles J. Five-Membered-Ring-Fused Tacrines as Anti-Alzheimer’s Disease Agents. Synlett 2021. [DOI: 10.1055/s-0040-1719823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractOur endeavors in the design, synthesis, and biological assessment of five-membered-ring-fused tacrines as potential therapeutic agents for Alzheimer’s disease are summarized. Particularly, we have identified racemic 4-(2-methoxyphenyl)-3-methyl-2,4,6,7,8,9-hexahydropyrazolo[4′,3′:5,6]pyrano[2,3-b]quinolin-5-amine, a pyranopyrazolotacrine, as having the best nontoxic profile at the highest concentrations used (300 μM); this allows cell viability, is less hepatotoxic than tacrine, and is a potent noncompetitive AChE inhibitor (IC50 = 1.52 ± 0.49 μM). It is able to completely inhibit the EeAChE-induced Aβ1–40 aggregation in a statistically significant manner without affecting the Aβ1–40 self-aggregation at 25 μM, and shows strong neuroprotective effects (EC50 = 0.82 ± 0.17 μM).1 Introduction2 Furo-, Thieno-, and Pyrrolotacrines3 Pyrazolo-, Oxazolo-, and Isoxazolotacrines4 Indolotacrines5 Pyrano- and Pyridopyrazolotacrines6 Conclusions and Outlook
Collapse
|
4
|
Trimethoxycinnamates and Their Cholinesterase Inhibitory Activity. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of twelve nature-inspired 3,4,5-trimethoxycinnamates were prepared and characterized. All compounds, including the starting 3,4,5-trimethoxycinnamic acid, were tested for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in vitro; the selectivity index (SI) was also determined. 2-Fluororophenyl (2E)-3-(3,4,5-trimethoxyphenyl)-prop-2-enoate demonstrated the highest SI (1.71) in favor of BChE inhibition. 2-Chlorophenyl (2E)-3-(3,4,5-trimethoxyphenyl)prop-2-enoate showed the highest AChE-inhibiting (IC50 = 46.18 µM) as well as BChE-inhibiting (IC50 = 32.46 µM) activity with an SI of 1.42. The mechanism of action of the most potent compound was determined by the Lineweaver–Burk plot as a mixed type of inhibition. An in vitro cell viability assay confirmed the insignificant cytotoxicity of the discussed compounds on the two cell lines. Trends between structure, physicochemical properties and activity were discussed.
Collapse
|
5
|
Kumar V, De P, Ojha PK, Saha A, Roy K. A Multi-layered Variable Selection Strategy for QSAR Modeling of Butyrylcholinesterase Inhibitors. Curr Top Med Chem 2020; 20:1601-1627. [DOI: 10.2174/1568026620666200616142753] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/23/2019] [Accepted: 10/28/2019] [Indexed: 02/08/2023]
Abstract
Background:
Alzheimer’s disease (AD), a neurological disorder, is the most common cause
of senile dementia. Butyrylcholinesterase (BuChE) enzyme plays a vital role in regulating the brain acetylcholine
(ACh) neurotransmitter, but in the case of Alzheimer’s disease (AD), BuChE activity gradually
increases in patients with a decrease in the acetylcholine (ACh) concentration via hydrolysis. ACh
plays an essential role in regulating learning and memory as the cortex originates from the basal forebrain,
and thus, is involved in memory consolidation in these sites.
Methods:
In this work, we have developed a partial least squares (PLS)-regression based two dimensional
quantitative structure-activity relationship (2D-QSAR) model using 1130 diverse chemical classes
of compounds with defined activity against the BuChE enzyme. Keeping in mind the strict Organization
for Economic Co-operation and Development (OECD) guidelines, we have tried to select significant
descriptors from the large initial pool of descriptors using multi-layered variable selection strategy using
stepwise regression followed by genetic algorithm (GA) followed by again stepwise regression technique
and at the end best subset selection prior to development of final model thus reducing noise in the
input. Partial least squares (PLS) regression technique was employed for the development of the final
model while model validation was performed using various stringent validation criteria.
Results:
The results obtained from the QSAR model suggested that the quality of the model is acceptable
in terms of both internal (R2= 0.664, Q2= 0.650) and external (R2
Pred= 0.657) validation parameters.
The QSAR studies were analyzed, and the structural features (hydrophobic, ring aromatic and hydrogen
bond acceptor/donor) responsible for enhancement of the activity were identified. The developed model
further suggests that the presence of hydrophobic features like long carbon chain would increase the
BuChE inhibitory activity and presence of amino group and hydrazine fragment promoting the hydrogen
bond interactions would be important for increasing the inhibitory activity against BuChE enzyme.
Conclusion:
Furthermore, molecular docking studies have been carried out to understand the molecular
interactions between the ligand and receptor, and the results are then correlated with the structural features
obtained from the QSAR models. The information obtained from the QSAR models are well corroborated
with the results of the docking study.
Collapse
Affiliation(s)
- Vinay Kumar
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Priyanka De
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Probir Kumar Ojha
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, 92 APC Road, Kolkata 700 032, India
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
6
|
Pourshojaei Y, Eskandari K, Asadipour A. Highly Significant Scaffolds to Design and Synthesis Cholinesterase Inhibitors as Anti-Alzheimer Agents. Mini Rev Med Chem 2019; 19:1577-1598. [DOI: 10.2174/1389557519666190719143112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 06/02/2019] [Accepted: 06/25/2019] [Indexed: 12/19/2022]
Abstract
:
Alzheimer, a progressive disease, is a common term for memory loss which interferes with
daily life through severe influence on cognitive abilities. Based on the cholinergic hypothesis, and Xray
crystallographic determination of the structure of acetylcholinesterase (AChE) enzyme, the level of
acetylcholine (ACh, an important neurotransmitter associated with memory) in the hippocampus and
cortex area of the brain has a direct effect on Alzheimer. This fact encourages scientists to design and
synthesize a wide range of acetylcholinesterase inhibitors (AChEIs) to control the level of ACh in the
brain, keeping in view the crystallographic structure of AChE enzyme and drugs approved by the Food
and Drug Administration (FDA).
:
AChEIs have slightly diverse pharmacological properties, but all of them work by inhibiting the segregation
of ACh by blocking AChE. We reviewed significant scaffolds introduced as AChEIs. In some
studies, the activity against butyrylcholinesterase (BuChE) has been evaluated as well because BuChE
is a similar enzyme to neuronal acetylcholinesterase and is capable of hydrolyzing ACh. In order to
study AChEIs effectively, we divided them structurally into 12 classes and briefly explained effective
AChEIs and compared their activities against AChE enzyme.
Collapse
Affiliation(s)
- Yaghoub Pourshojaei
- Department of Medicinal Chemistry, Faculty of Pharmacy & Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khalil Eskandari
- Department of Medicinal Chemistry, Faculty of Pharmacy & Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Asadipour
- Department of Medicinal Chemistry, Faculty of Pharmacy & Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Design, synthesis and biological evaluation of benzofuran appended benzothiazepine derivatives as inhibitors of butyrylcholinesterase and antimicrobial agents. Bioorg Med Chem 2018; 26:3076-3095. [PMID: 29866481 DOI: 10.1016/j.bmc.2018.02.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/17/2018] [Accepted: 02/27/2018] [Indexed: 01/10/2023]
|
8
|
Wu J, Tian Y, Wang S, Pistolozzi M, Jin Y, Zhou T, Roy G, Xu L, Tan W. Design, synthesis and biological evaluation of bambuterol analogues as novel inhibitors of butyrylcholinesterase. Eur J Med Chem 2017; 126:61-71. [DOI: 10.1016/j.ejmech.2016.08.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/28/2016] [Accepted: 08/25/2016] [Indexed: 02/02/2023]
|
9
|
Horáková E, Drabina P, Brož B, Štěpánková Š, Vorčáková K, Královec K, Havelek R, Sedlák M. Synthesis, characterization and in vitro evaluation of substituted N-(2-phenylcyclopropyl)carbamates as acetyl- and butyrylcholinesterase inhibitors. J Enzyme Inhib Med Chem 2016; 31:173-179. [PMID: 27476673 DOI: 10.1080/14756366.2016.1212193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A serie of O-substituted N-2-phenylcyclopropylcarbamates was prepared and characterized. These carbamates were tested as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). It was found, that these compounds exhibit moderate inhibition activity with values of IC50 in the range of 54.8-94.4 μM (for AChE) and up to 5.8 μM (for BChE). The AChE/BChE selectivity for each carbamate was calculated. These values varied from 0.50 to 9.46, two carbamate derivatives inhibited only AChE selectively. The most promising derivative was prepared in all optically pure forms (four isomers). It was found that individual stereoisomers differed only slightly in the inhibition ability. The cytotoxicity of all carbamates was evaluated using the standard in vitro test with Jurkat cells. With regard to their inhibition activity and cytotoxicity as well as easy preparation, O-substituted N-2-phenylcyclopropylcarbamates can be considered as promising compounds for potential medicinal applications.
Collapse
Affiliation(s)
- Eva Horáková
- a Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice , Pardubice , Czech Republic and
| | - Pavel Drabina
- a Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice , Pardubice , Czech Republic and
| | - Břetislav Brož
- a Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice , Pardubice , Czech Republic and
| | - Šárka Štěpánková
- b Department of Biological and Biochemical Sciences , Faculty of Chemical Technology, University of Pardubice , Pardubice , Czech Republic
| | - Katarína Vorčáková
- b Department of Biological and Biochemical Sciences , Faculty of Chemical Technology, University of Pardubice , Pardubice , Czech Republic
| | - Karel Královec
- b Department of Biological and Biochemical Sciences , Faculty of Chemical Technology, University of Pardubice , Pardubice , Czech Republic
| | - Radim Havelek
- b Department of Biological and Biochemical Sciences , Faculty of Chemical Technology, University of Pardubice , Pardubice , Czech Republic
| | - Miloš Sedlák
- a Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice , Pardubice , Czech Republic and
| |
Collapse
|
10
|
Synthesis, molecular docking and biological evaluation of N,N-disubstituted 2-aminothiazolines as a new class of butyrylcholinesterase and carboxylesterase inhibitors. Bioorg Med Chem 2016; 24:1050-62. [DOI: 10.1016/j.bmc.2016.01.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/04/2016] [Accepted: 01/17/2016] [Indexed: 11/21/2022]
|
11
|
Cherif O, Masmoudi F, Allouche F, Chabchoub F, Trigui M. Synthesis, antibacterial, and antifungal activities of new pyrimidinone derivatives. HETEROCYCL COMMUN 2015. [DOI: 10.1515/hc-2015-0066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractAn efficient synthesis of new pyrrolopyrimidinones 3a-d and isoxazolopyrimidinones 4a-c from the respective aminocyanopyrroles 1a-d and aminocyanoisoxazoles 2a-c is presented. The synthesized compounds were screened for antimicrobial activity against a panel of bacteria and fungi. Compound 4c exhibits remarkable activity against a broad spectrum of Gram-positive and Gram-negative bacteria and pathogenic fungi.
Collapse
Affiliation(s)
- Oussama Cherif
- 1Laboratory of Applied Chemistry Heterocycles, Fats and Polymers, Faculty of Sciences of Sfax, University of Sfax, Sfax 3018, Tunisia
| | - Fatma Masmoudi
- 2Biopesticides Team (LPIP), Center of Biotechnology of Sfax, University of Sfax, PO Box 1177, Sfax 3018, Tunisia
| | - Fatma Allouche
- 1Laboratory of Applied Chemistry Heterocycles, Fats and Polymers, Faculty of Sciences of Sfax, University of Sfax, Sfax 3018, Tunisia
| | - Fakher Chabchoub
- 1Laboratory of Applied Chemistry Heterocycles, Fats and Polymers, Faculty of Sciences of Sfax, University of Sfax, Sfax 3018, Tunisia
| | - Mohamed Trigui
- 2Biopesticides Team (LPIP), Center of Biotechnology of Sfax, University of Sfax, PO Box 1177, Sfax 3018, Tunisia
| |
Collapse
|