1
|
Fetse J, Kandel S, Mamani UF, Cheng K. Recent advances in the development of therapeutic peptides. Trends Pharmacol Sci 2023; 44:425-441. [PMID: 37246037 PMCID: PMC10330351 DOI: 10.1016/j.tips.2023.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/30/2023]
Abstract
Peptides have unique characteristics that make them highly desirable as therapeutic agents. The physicochemical and proteolytic stability profiles determine the therapeutic potential of peptides. Multiple strategies to enhance the therapeutic profile of peptides have emerged. They include chemical modifications, such as cyclization, substitution with d-amino acids, peptoid formation, N-methylation, and side-chain halogenation, and incorporation in delivery systems. There have been recent advances in approaches to discover peptides having these modifications to attain desirable therapeutic properties. We critically review these recent advancements in therapeutic peptide development.
Collapse
Affiliation(s)
- John Fetse
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Sashi Kandel
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Umar-Farouk Mamani
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA.
| |
Collapse
|
2
|
Nadal-Bufí F, Chan LY, Mohammad HH, Mason JM, Salomon C, Lai A, Thompson EW, Craik DJ, Kaas Q, Henriques ST. Peptide-based LDH5 inhibitors enter cancer cells and impair proliferation. Cell Mol Life Sci 2022; 79:606. [PMID: 36436181 DOI: 10.1007/s00018-022-04633-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/28/2022]
Abstract
Lactate dehydrogenase 5 (LDH5) is overexpressed in many cancers and is a potential target for anticancer therapy due to its role in aerobic glycolysis. Small-molecule drugs have been developed as competitive inhibitors to bind substrate/cofactor sites of LDH5, but none reached the clinic to date. Recently, we designed the first LDH5 non-competitive inhibitor, cGmC9, a peptide that inhibits protein-protein interactions required for LDH5 enzymatic activity. Peptides are gaining a large interest as anticancer agents to modulate intracellular protein-protein interactions not targetable by small molecules; however, delivery of these peptides to the cytosol, where LDH5 and other anticancer targets are located, remains a challenge for this class of therapeutics. In this study, we focused on the cellular internalisation of cGmC9 to achieve LDH5 inhibition in the cytosol. We designed cGmC9 analogues and compared them for LDH5 inhibition, cellular uptake, toxicity, and antiproliferation against a panel of cancer cell lines. The lead analogue, [R/r]cGmC9, specifically impairs proliferation of cancer cell lines with high glycolytic profiles. Proteomics analysis showed expected metabolic changes in response to decreased glycolysis. This is the first report of a peptide-based LDH5 inhibitor able to modulate cancer metabolism and kill cancer cells that are glycolytic. The current study demonstrates the potential of using peptides as inhibitors of intracellular protein-protein interactions relevant for cancer pathways and shows that active peptides can be rationally designed to improve their cell permeation.
Collapse
Affiliation(s)
- Ferran Nadal-Bufí
- Queensland University of Technology, School of Biomedical Sciences and Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Lai Y Chan
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Hadi H Mohammad
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.,Department of Pharmacy, College of Pharmacy, Knowledge University, Erbil, 44001, Kurdistan Region, Iraq
| | - Jody M Mason
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia.,Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, 8320000, Santiago, Chile
| | - Andrew Lai
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Erik W Thompson
- Queensland University of Technology, School of Biomedical Sciences and Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sónia T Henriques
- Queensland University of Technology, School of Biomedical Sciences and Translational Research Institute, Brisbane, QLD, 4102, Australia. .,Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
3
|
Yang L, Yang G, Bing Z, Tian Y, Huang L, Niu Y, Yang L. Accelerating the discovery of anticancer peptides targeting lung and breast cancers with the Wasserstein autoencoder model and PSO algorithm. Brief Bioinform 2022; 23:6658854. [PMID: 35945135 DOI: 10.1093/bib/bbac320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/14/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
In the development of targeted drugs, anticancer peptides (ACPs) have attracted great attention because of their high selectivity, low toxicity and minimal non-specificity. In this work, we report a framework of ACPs generation, which combines Wasserstein autoencoder (WAE) generative model and Particle Swarm Optimization (PSO) forward search algorithm guided by attribute predictive model to generate ACPs with desired properties. It is well known that generative models based on Variational AutoEncoder (VAE) and Generative Adversarial Networks (GAN) are difficult to be used for de novo design due to the problems of posterior collapse and difficult convergence of training. Our WAE-based generative model trains more successfully (lower perplexity and reconstruction loss) than both VAE and GAN-based generative models, and the semantic connections in the latent space of WAE accelerate the process of forward controlled generation of PSO, while VAE fails to capture this feature. Finally, we validated our pipeline on breast cancer targets (HIF-1) and lung cancer targets (VEGR, ErbB2), respectively. By peptide-protein docking, we found candidate compounds with the same binding sites as the peptides carried in the crystal structure but with higher binding affinity and novel structures, which may be potent antagonists that interfere with these target-mediated signaling.
Collapse
Affiliation(s)
- Lijuan Yang
- Institute of modern physics, Chinese Academy of Science, Lanzhou 730000, China.,School of Physics and Technology, Lanzhou University, Lanzhou 730000, China.,School of Physics, University of Chinese Academy of Science, Beijing 100049, China.,Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Guanghui Yang
- Institute of modern physics, Chinese Academy of Science, Lanzhou 730000, China.,Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Zhitong Bing
- Institute of modern physics, Chinese Academy of Science, Lanzhou 730000, China.,Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Yuan Tian
- Institute of modern physics, Chinese Academy of Science, Lanzhou 730000, China.,School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Liang Huang
- School of Physics and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yuzhen Niu
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo 255000, China
| | - Lei Yang
- Institute of modern physics, Chinese Academy of Science, Lanzhou 730000, China.,Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| |
Collapse
|
4
|
Brennan A, Leech JT, Kad NM, Mason JM. An Approach to Derive Functional Peptide Inhibitors of Transcription Factor Activity. JACS AU 2022; 2:996-1006. [PMID: 35557753 PMCID: PMC9088798 DOI: 10.1021/jacsau.2c00105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 06/15/2023]
Abstract
We report the development of a high-throughput, intracellular "transcription block survival" (TBS) screening platform to derive functional transcription factor antagonists. TBS is demonstrated using the oncogenic transcriptional regulator cJun, with the development of antagonists that bind cJun and prevent both dimerization and, more importantly, DNA binding remaining a primary challenge. In TBS, cognate TRE sites are introduced into the coding region of the essential gene, dihydrofolate reductase (DHFR). Introduction of cJun leads to TRE binding, preventing DHFR expression by directly blocking RNA polymerase gene transcription to abrogate cell proliferation. Peptide library screening identified a sequence that both binds cJun and antagonizes function by preventing DNA binding, as demonstrated by restored cell viability and subsequent in vitro hit validation. TBS is an entirely tag-free genotype-to-phenotype approach, selecting desirable attributes such as high solubility, target specificity, and low toxicity within a complex cellular environment. TBS facilitates rapid library screening to accelerate the identification of therapeutically valuable sequences.
Collapse
Affiliation(s)
- Andrew Brennan
- Department
of Biology & Biochemistry, University
of Bath, Bath BA2 7AY, U.K.
| | - James T. Leech
- School
of Biosciences, University of Kent, Canterbury CT2 7NH, U.K.
| | - Neil M. Kad
- School
of Biosciences, University of Kent, Canterbury CT2 7NH, U.K.
| | - Jody M. Mason
- Department
of Biology & Biochemistry, University
of Bath, Bath BA2 7AY, U.K.
| |
Collapse
|
5
|
Qin X, Chen H, Tu L, Ma Y, Liu N, Zhang H, Li D, Riedl B, Bierer D, Yin F, Li Z. Potent Inhibition of HIF1α and p300 Interaction by a Constrained Peptide Derived from CITED2. J Med Chem 2021; 64:13693-13703. [PMID: 34472840 DOI: 10.1021/acs.jmedchem.1c01043] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Disrupting the interaction between HIF1α and p300 is a promising strategy to modulate the hypoxia response of tumor cells. Herein, we designed a constrained peptide inhibitor derived from the CITED2/p300 complex to disturb the HIF1α/p300 interaction. Through truncation/mutation screening and a terminal aspartic acid-stabilized strategy, a constrained peptide was constructed with outstanding biochemical/biophysical properties, especially in binding affinity, cell penetration, and serum stability. To date, our study was the first one to showcase that stabilized peptides derived from CITED2 using helix-stabilizing methods acted as a promising candidate for modulating hypoxia-inducible signaling.
Collapse
Affiliation(s)
- Xuan Qin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Hailing Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Licheng Tu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yue Ma
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Na Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Haowei Zhang
- Key Lab in Healthy Science and Technology, Division of Life Science, Shenzhen Graduate School of Tsinghua University, Shenzhen 518055, China
| | - Di Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Bernd Riedl
- Department of Medicinal Chemistry, Bayer AG, Aprather Weg 18A, Wuppertal 42096, Germany
| | - Donald Bierer
- Department of Medicinal Chemistry, Bayer AG, Aprather Weg 18A, Wuppertal 42096, Germany
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
6
|
Ganeshpurkar A, Swetha R, Kumar D, Gangaram GP, Singh R, Gutti G, Jana S, Kumar D, Kumar A, Singh SK. Protein-Protein Interactions and Aggregation Inhibitors in Alzheimer's Disease. Curr Top Med Chem 2019; 19:501-533. [PMID: 30836921 DOI: 10.2174/1568026619666190304153353] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/31/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alzheimer's Disease (AD), a multifaceted disorder, involves complex pathophysiology and plethora of protein-protein interactions. Thus such interactions can be exploited to develop anti-AD drugs. OBJECTIVE The interaction of dynamin-related protein 1, cellular prion protein, phosphoprotein phosphatase 2A and Mint 2 with amyloid β, etc., studied recently, may have critical role in progression of the disease. Our objective has been to review such studies and their implications in design and development of drugs against the Alzheimer's disease. METHODS Such studies have been reviewed and critically assessed. RESULTS Review has led to show how such studies are useful to develop anti-AD drugs. CONCLUSION There are several PPIs which are current topics of research including Drp1, Aβ interactions with various targets including PrPC, Fyn kinase, NMDAR and mGluR5 and interaction of Mint2 with PDZ domain, etc., and thus have potential role in neurodegeneration and AD. Finally, the multi-targeted approach in AD may be fruitful and opens a new vista for identification and targeting of PPIs in various cellular pathways to find a cure for the disease.
Collapse
Affiliation(s)
- Ankit Ganeshpurkar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Rayala Swetha
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Devendra Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Gore P Gangaram
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ravi Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Gopichand Gutti
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Srabanti Jana
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Dileep Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Sushil K Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
7
|
Broad specificity immunoassay for detection of Bacillus thuringiensis Cry toxins through engineering of a single chain variable fragment with mutagenesis and screening. Int J Biol Macromol 2018; 107:920-928. [DOI: 10.1016/j.ijbiomac.2017.09.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 09/12/2017] [Accepted: 09/17/2017] [Indexed: 12/22/2022]
|
8
|
NRPa-308, a new neuropilin-1 antagonist, exerts in vitro anti-angiogenic and anti-proliferative effects and in vivo anti-cancer effects in a mouse xenograft model. Cancer Lett 2018; 414:88-98. [DOI: 10.1016/j.canlet.2017.10.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/17/2022]
|
9
|
Baxter D, Ullman CG, Frigotto L, Mason JM. Exploiting Overlapping Advantages of In Vitro and In Cellulo Selection Systems to Isolate a Novel High-Affinity cJun Antagonist. ACS Chem Biol 2017; 12:2579-2588. [PMID: 28880076 DOI: 10.1021/acschembio.7b00693] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have combined two peptide library-screening systems, exploiting the benefits offered by both to select novel antagonistic agents of cJun. CIS display is an in vitro cell-free system that allows very large libraries (≤1014) to be interrogated. However, affinity-based screening conditions can poorly reflect those relevant to therapeutic application, particularly for difficult intracellular targets, and can lead to false positives. In contrast, an in cellulo screening system such as the Protein-fragment Complementation Assay (PCA) selects peptides with high target affinity while additionally profiling for target specificity, protease resistance, solubility, and lack of toxicity in a more relevant context. A disadvantage is the necessity to transform cells, limiting library sizes that can be screened to ≤106. However, by combining both cell-free and cell-based systems, we isolated a peptide (CPW) from a ∼1010 member library, which forms a highly stable interaction with cJun (Tm = 63 °C, Kd = 750 nM, ΔG = -8.2 kcal/mol) using the oncogenic transcriptional regulator Activator Protein-1 (AP-1) as our exemplar target. In contrast, CIS display alone selected a peptide with low affinity for cJun (Tm = 34 °C, Kd = 25 μM, ΔG = -6.2 kcal/mol), highlighting the benefit of CIS → PCA. Furthermore, increased library size with CIS → PCA vs PCA alone allows the freedom to introduce noncanonical options, such as interfacial aromatics, and solvent exposed options that may allow the molecule to explore alternative structures and interact with greater affinity and efficacy with the target. CIS → PCA therefore offers significant potential as a peptide-library screening platform by synergistically combining the relative attributes of both assays to generate therapeutically interesting compounds that may otherwise not be identified.
Collapse
Affiliation(s)
- Daniel Baxter
- Dept
of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
- Isogenica Ltd., Chesterford Research
Park, Little Chesterford, Essex CB10 1XL, United Kingdom
| | - Christopher G. Ullman
- Isogenica Ltd., Chesterford Research
Park, Little Chesterford, Essex CB10 1XL, United Kingdom
| | - Laura Frigotto
- Isogenica Ltd., Chesterford Research
Park, Little Chesterford, Essex CB10 1XL, United Kingdom
| | - Jody M. Mason
- Dept
of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|
10
|
Rezaei Araghi R, Keating AE. Designing helical peptide inhibitors of protein-protein interactions. Curr Opin Struct Biol 2016; 39:27-38. [PMID: 27123812 DOI: 10.1016/j.sbi.2016.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/28/2016] [Accepted: 04/03/2016] [Indexed: 02/04/2023]
Abstract
Short helical peptides combine characteristics of small molecules and large proteins and provide an exciting area of opportunity in protein design. A growing number of studies report novel helical peptide inhibitors of protein-protein interactions. New techniques have been developed for peptide design and for chemically stabilizing peptides in a helical conformation, which frequently improves protease resistance and cell permeability. We summarize advances in peptide crosslinking chemistry and give examples of peptide design studies targeting coiled-coil transcription factors, Bcl-2 family proteins, MDM2/MDMX, and HIV gp41, among other targets.
Collapse
Affiliation(s)
- Raheleh Rezaei Araghi
- MIT Department of Biology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Amy E Keating
- MIT Department of Biology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; MIT Department of Biological Engineering, 77 Massachusetts Avenue, Cambridge, MA 02139, United States.
| |
Collapse
|