1
|
A randomized, double-blind, comparison of radium-223 and placebo, in combination with abiraterone acetate and prednisolone, in castration-resistant metastatic prostate cancer: subgroup analysis of Japanese patients in the ERA 223 study. Int J Clin Oncol 2019; 25:720-731. [DOI: 10.1007/s10147-019-01589-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/24/2019] [Indexed: 01/08/2023]
|
2
|
Luo XH, Liu JZ, Wang B, Men QL, Ju YQ, Yin FY, Zheng C, Li W. KLF14 potentiates oxidative adaptation via modulating HO-1 signaling in castrate-resistant prostate cancer. Endocr Relat Cancer 2019; 26:181-195. [PMID: 30400002 DOI: 10.1530/erc-18-0383] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 09/11/2018] [Indexed: 12/23/2022]
Abstract
Insights into the mechanisms by which key factors stimulate cell growth under androgen-depleted conditions is a premise to the development of effective treatments with clinically significant activity in patients with castration-resistant prostate cancer (CRPC). Herein, we report that, the expression of Krüppel-like factor 14 (KLF14), a master transcription factor in the regulation of lipid metabolism, was significantly induced in castration-insensitive PCa cells and tumor tissues from a mouse xenograft model of CRPC. KLF14 upregulation in PCa cells, which was stimulated upstream by oxidative stress, was dependent on multiple pathways including PI3K/AKT, p42/p44 MAPK, AMPK and PKC pathways. By means of ectopic overexpression and genetic inactivation, we further show that KLF14 promoted cell growth via positive regulation of the antioxidant response under androgen-depleted conditions. Mechanistically, KLF14 coupled to p300 and CBP to enhance the transcriptional activation of HMOX1, the gene encoding the antioxidative enzyme heme oxygenase-1 (HO-1) that is one of the most important mechanisms of cell adaptation to stress. Transient knockdown of HMOX1 is sufficient to overcome KLF14 overexpression-potentiated PCa cell growth under androgen-depleted conditions. From a pharmacological standpoint, in vivo administration of ZnPPIX (a specific inhibitor of HO-1) effectively attenuates castration-resistant progression in the mouse xenograft model, without changing KLF14 level. Together, these results provide comprehensive insight into the KLF14-dependent regulation of antioxidant response and subsequent pathogenesis of castration resistance and indicate that interventions targeting the KLF14/HO-1 adaptive mechanism should be further explored for CRPC treatment.
Collapse
Affiliation(s)
- Xiao-Hui Luo
- Department of Urology, Baoji Center Hospital, Baoji, Shaanxi Province, People's Republic of China
| | - Jian-Zhou Liu
- Department of Urology, Baoji Center Hospital, Baoji, Shaanxi Province, People's Republic of China
| | - Bo Wang
- Department of Urology, Baoji Center Hospital, Baoji, Shaanxi Province, People's Republic of China
| | - Qun-Li Men
- Department of Urology, Baoji Center Hospital, Baoji, Shaanxi Province, People's Republic of China
| | - Yu-Quan Ju
- Department of Urology, Baoji Center Hospital, Baoji, Shaanxi Province, People's Republic of China
| | - Feng-Yan Yin
- Department of Urology, Baoji Center Hospital, Baoji, Shaanxi Province, People's Republic of China
| | - Chao Zheng
- Department of Urology, Baoji Center Hospital, Baoji, Shaanxi Province, People's Republic of China
| | - Wei Li
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| |
Collapse
|
3
|
Cai H, Xie F, Mulgaonkar A, Chen L, Sun X, Hsieh JT, Peng F, Tian R, Li L, Wu C, Ai H. Bombesin functionalized 64Cu-copper sulfide nanoparticles for targeted imaging of orthotopic prostate cancer. Nanomedicine (Lond) 2018; 13:1695-1705. [PMID: 29786467 DOI: 10.2217/nnm-2018-0062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aim: To synthesize and evaluate the imaging potential of Bom-PEG-[64Cu]CuS nanoparticles (NPs) in orothotopic prostate tumor. Materials & methods: [64Cu]CuS NPs were synthesized in aqueous solution by 64CuCl2 and Na2S reaction. Then PEG linker with or without bombesin peptide were conjugated to the surface of [64Cu]CuS NPs to produce Bom-PEG-[64Cu]CuS and PEG-[64Cu]CuS NPs. These two kinds of NPs were used for testing specific uptake in prostate cancer cells in vitro and imaging of orthotopic prostate tumor in vivo. Results: Bom-PEG-[64Cu]CuS and PEG-[64Cu]CuS NPs were successfully synthesized with core diameter of approximately 5 nm. Radioactive cellular uptake revealed that Bom-PEG-[64Cu]CuS was able to specifically bind to prostate cancer cells, and the microPET-CT imaging indicated clear visualization of orthotopic prostate tumors. Conclusion: Radiolabeled Bom-PEG-[64Cu]CuS NPs have potential as an ideal agent for orthotopic prostate tumor imaging by microPET-CT.
Collapse
Affiliation(s)
- Huawei Cai
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Fang Xie
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- PET Center, Huashan Hospital, Fudan University, 200040, Shanghai, PR China
| | - Aditi Mulgaonkar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lihong Chen
- Department of Biochemistry & Molecular Biology, West China School of Basic Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, PR China
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Fangyu Peng
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rong Tian
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Lin Li
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Changqiang Wu
- Sichuan Key Laboratory of Medical Imaging & School of Medical Imaging, North Sichuan Medical College, Nanchong, 637000, PR China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, PR China
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, PR China
| |
Collapse
|
4
|
Xu X, Ge R, Li L, Wang J, Lu X, Xue S, Chen X, Li Z, Bian J. Exploring the tetrahydroisoquinoline thiohydantoin scaffold blockade the androgen receptor as potent anti-prostate cancer agents. Eur J Med Chem 2017; 143:1325-1344. [PMID: 29117897 DOI: 10.1016/j.ejmech.2017.10.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/07/2017] [Accepted: 10/10/2017] [Indexed: 11/28/2022]
Abstract
Prostate cancer (PC) is a major cause of cancer-related male death in worldwide and the identification of new and improved potent anti-PC molecules is constantly required. A novel scaffold of tetrahydroisoquinoline thiohydantoin was rationally designed based on the enzalutamide structures and our pre-work, leading to the discovery of a series of new antiproliferative compounds. Several new analogues displayed improved androgen receptor (AR) antagonistic activity, while maintaining the higher selective toxicity toward LNCaP cells (AR-rich) versus DU145 cells (AR-deficient) compared to enzalutamide. In fact, compound 55 exhibited promising in vitro antitumor activity by impairing AR unclear translocation. More importantly, 55 showed better pharmacokinetic properties compared to the compound 1 reported in our pre-work. These results demonstrate a step towards the development of novel and improved AR antagonists.
Collapse
Affiliation(s)
- Xi Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Raoling Ge
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Lei Li
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Jubo Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Xiaoyu Lu
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Siqi Xue
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Xijing Chen
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Zhiyu Li
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Jinlei Bian
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| |
Collapse
|
5
|
Xie F, Peng F. Anti-Prostate Cancer Activity of 8-Hydroxyquinoline-2-Carboxaldehyde–Thiosemicarbazide Copper Complexes by Fluorescent Microscopic Imaging. J Fluoresc 2017; 27:1937-1941. [DOI: 10.1007/s10895-017-2133-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/15/2017] [Indexed: 10/19/2022]
|
6
|
Xiao Y, Jiang Y, Song H, Liang T, Li Y, Yan D, Fu Q, Li Z. RNF7 knockdown inhibits prostate cancer tumorigenesis by inactivation of ERK1/2 pathway. Sci Rep 2017; 7:43683. [PMID: 28252001 PMCID: PMC5333079 DOI: 10.1038/srep43683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/30/2017] [Indexed: 02/07/2023] Open
Abstract
Development of castration resistance is a key contributor to mortality in patients with prostate cancer. High expression of RING finger protein 7 (RNF7) in cancer cells is known to play a key role in tumor progression. However, the role of RNF7 in prostate cancer progression is not well elucidated. In this study, we silenced RNF7 by shRNA interference in two castration resistant prostate cancer (CRPC) cell lines, DU145 and PC3. RNF7 knockdown attenuated proliferation and enhanced sensitivity of prostate cancer cells to cisplatin treatment. Invasive property of DU145 and PC3 cells was also attenuated by RNF7 silencing. The underlying mechanisms appear to be associated with accumulation of tumor suppressive proteins p21, p27 and NOXA, while inactivation of ERK1/2 by RNF7 knockdown. We demonstrated that RNF7 knockdown induced growth suppression of prostate cancer cells and inactivated ERK1/2 pathway, which suggested RNF7 might be a potential novel therapeutic target for CRPC.
Collapse
Affiliation(s)
- Yangjiong Xiao
- Shanghai Sixth People's Hospital East, Shanghai University of Medicine &Health Sciences, Shanghai 201306, China.,Joint Research Center for Translational Medicine, East China Normal University and Shanghai Fengxian District Central Hospital, Southern Medical University, Nanfeng Road 6600, Shanghai 201499, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yan Jiang
- Shanghai Sixth People's Hospital East, Shanghai University of Medicine &Health Sciences, Shanghai 201306, China.,Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Hongmei Song
- Shanghai Sixth People's Hospital East, Shanghai University of Medicine &Health Sciences, Shanghai 201306, China
| | - Tao Liang
- Shanghai Sixth People's Hospital East, Shanghai University of Medicine &Health Sciences, Shanghai 201306, China
| | - Yonghui Li
- Shanghai Sixth People's Hospital East, Shanghai University of Medicine &Health Sciences, Shanghai 201306, China
| | - Dongliang Yan
- Shanghai Sixth People's Hospital East, Shanghai University of Medicine &Health Sciences, Shanghai 201306, China
| | - Qiang Fu
- Shanghai Sixth People's Hospital East, Shanghai University of Medicine &Health Sciences, Shanghai 201306, China
| | - Zuowei Li
- Shanghai Sixth People's Hospital East, Shanghai University of Medicine &Health Sciences, Shanghai 201306, China
| |
Collapse
|