1
|
Gundamaraju R, Wu J, William JNG, Lu W, Jha NK, Ramasamy S, Rao PV. Ascendancy of unfolded protein response over glioblastoma: estimating progression, prognosis and survival. Biotechnol Genet Eng Rev 2022; 39:143-165. [PMID: 35904341 DOI: 10.1080/02648725.2022.2106002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Glioblastoma (GBM) is presented with a poor prognosis. The endoplasmic reticulum stress (ERS) has been implicated as a major contributor to disease progression and chemoresistance in GBM. Triggering ERS by chemical agents or genetic modulations is identified as some of the reasons for regulating gene expression and the pathogenesis of GBM. ERS initiates unfolded protein response (UPR), an integrated system useful in restoring homeostasis or inducing apoptosis. Modulation of UPR might have positive outcomes in GBM treatment as UPR inducers have been shown to alter cell survival and migration. In the current review, we have utilized GSE7806, a publicly available dataset from Gene Expression Omnibus (GEO), to evaluate the genes expressed during 6.5 hr and 18 hr, which can be comparable to the early and late-onset of the disease. Subsequently, we have elucidated the prognosis and survival information whilst the expression of these genes in the GBM was noted in previous studies. This is the first of its kind review summarizing the most recent gene information correlating UPR and GBM.
Collapse
Affiliation(s)
- Rohit Gundamaraju
- ER stress and Mucosal Immunology Laboratory, School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Jian Wu
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Jonahunnatha Nesson George William
- Department of Medical, Oral and Biotechnological Sciences (DSMOB), Ageing Research Center and Translational medicine-CeSI-MeT, "G. d'Annunzio" University Chieti-Pescara, Chieti, Italy
| | - Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of engineering and Technology, Sharda University, Greater Noida, UP, Indonesia
| | | | - Pasupuleti Visweswara Rao
- f Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.,g Department of Biotechnology, School of applied and Life Sciences, Uttaranchal University, Dehradun, 248007, India.,h Cardiac Hypertrophy Laboratory, Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India.,i Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.,j Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Riau, Indonesia
| |
Collapse
|
2
|
Bahr T, Katuri J, Liang T, Bai Y. Mitochondrial chaperones in human health and disease. Free Radic Biol Med 2022; 179:363-374. [PMID: 34780988 PMCID: PMC8893670 DOI: 10.1016/j.freeradbiomed.2021.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 02/03/2023]
Abstract
Molecular chaperones are a family of proteins that maintain cellular protein homeostasis through non-covalent peptide folding and quality control mechanisms. The chaperone proteins found within mitochondria play significant protective roles in mitochondrial biogenesis, quality control, and stress response mechanisms. Defective mitochondrial chaperones have been implicated in aging, neurodegeneration, and cancer. In this review, we focus on the two most prominent mitochondrial chaperones: mtHsp60 and mtHsp70. These proteins demonstrate different cellular localization patterns, interact with different targets, and have different functional activities. We discuss the structure and function of these prominent mitochondrial chaperone proteins and give an update on newly discovered regulatory mechanisms and disease implications.
Collapse
Affiliation(s)
- Tyler Bahr
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Joshua Katuri
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Ting Liang
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Yidong Bai
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA.
| |
Collapse
|
3
|
Verma A, Arora A, Bhatt AN, Arya MB, Prasad AK, Parmar VS, Dwarakanath BS. Radiosensitization of calreticulin-overexpressing human glioma cell line by the polyphenolic acetate 7, 8-diacetoxy-4-methylcoumarin. Cancer Rep (Hoboken) 2021; 5:e1326. [PMID: 34472223 PMCID: PMC9780425 DOI: 10.1002/cnr2.1326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/17/2020] [Accepted: 11/16/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Calreticulin (CRT), an endoplasmic reticulum-resident protein generally overexpressed in cancer cells, is associated with radiation resistance. CRT shows higher transacetylase activity, as shown by us earlier, in the presence of the polyphenolic acetates (like 7, 8-diacetoxy-4-methylcoumarin, DAMC) and modifies the activity of a number of proteins, thereby influencing cell signaling. AIM To investigate the relationship between CRT expression and radiation response in a human glioma cell line and to evaluate the radiomodifying effects of DAMC. METHODS AND RESULTS Studies were carried out in an established human glioma cell line (BMG-1) and its isogenic clone overexpressing CRT (CROE, CRT-overexpressing cells) by analyzing clonogenic survival, cell proliferation, micronuclei analysis, and protein levels by Western blotting as parameters of responses. CRT overexpression conferred resistance against radiation-induced cell death in CROE cells (D37 = 7.35 Gy, D10 = 12.6 Gy and D0 = 7.25 Gy) as compared to BMG-1 cells (D37 = 5.70 Gy, D10 = 9.2 Gy and D0 = 5.6 Gy). A lower level of radiation-induced micronuclei formation observed in CROE cells suggested that reduced induction and/or enhanced DNA repair partly contributed to the enhanced radioresistance. Consistent with this suggestion, we noted that CRT-mediated radioresistance was coupled with enhanced grp78 level and reduced P53 activation-mediated prodeath signaling, while no changes were noted in acetylation of histone H4. DAMC-enhanced radiation-induced delayed (secondary) apoptosis, which was higher in CROE cells. CONCLUSION CRT overexpression confers resistance against radiation-induced death of human glioma cells, which can be overcome by the polyphenolic acetate DAMC.
Collapse
Affiliation(s)
- Amit Verma
- Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Majumdar MargDelhiIndia,Present address:
PACT & Health LLC, BranfordConnecticut, 06405‐2546USA
| | - Aastha Arora
- Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Majumdar MargDelhiIndia
| | - Anant N Bhatt
- Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Majumdar MargDelhiIndia
| | | | - Ashok K Prasad
- Bioorganic Laboratory, Department of ChemistryUniversity of DelhiDelhiIndia
| | - Virinder S Parmar
- Bioorganic Laboratory, Department of ChemistryUniversity of DelhiDelhiIndia,Department of Chemistry and Environmental ScienceMedgar Evers College, The City University of New YorkBrooklynNew York
| | - Bilikere S Dwarakanath
- Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Majumdar MargDelhiIndia,Central Research FacilitySri Ramachandra Institute of Higher Education and ResearchChennaiIndia
| |
Collapse
|
4
|
Liu K, Tsung K, Attenello FJ. Characterizing Cell Stress and GRP78 in Glioma to Enhance Tumor Treatment. Front Oncol 2020; 10:608911. [PMID: 33363039 PMCID: PMC7759649 DOI: 10.3389/fonc.2020.608911] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor, carrying a very poor prognosis, with median overall survival at about 12 to 15 months despite surgical resection, chemotherapy with temozolomide (TMZ), and radiation therapy. GBM recurs in the vast majority of patients, with recurrent tumors commonly displaying increase in resistance to standard of care chemotherapy, TMZ, as well as radiotherapy. One of the most commonly cited mechanisms of chemotherapeutic and radio-resistance occurs via the glucose-regulated protein 78 (GRP78), a well-studied mediator of the unfolded protein response (UPR), that has also demonstrated potential as a biomarker in GBM. Overexpression of GRP78 has been directly correlated with malignant tumor characteristics, including higher tumor grade, cellular proliferation, migration, invasion, poorer responses to TMZ and radiation therapy, and poorer patient outcomes. GRP78 expression is also higher in GBM tumor cells upon recurrence. Meanwhile, knockdown or suppression of GRP78 has been shown to sensitize cells to TMZ and radiation therapy. In light of these findings, various novel developing therapies are targeting GRP78 as monotherapies, combination therapies that enhance the effects of TMZ and radiation therapy, and as treatment delivery modalities. In this review, we delineate the mechanisms by which GRP78 has been noted to specifically modulate glioblastoma behavior and discuss current developing therapies involving GRP78 in GBM. While further research is necessary to translate these developing therapies into clinical settings, GRP78-based therapies hold promise in improving current standard-of-care GBM therapy and may ultimately lead to improved patient outcomes.
Collapse
Affiliation(s)
- Kristie Liu
- Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Kathleen Tsung
- Department of Neurosurgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Frank J Attenello
- Department of Neurosurgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
5
|
Proteomic analyses of brain tumor cell lines amidst the unfolded protein response. Oncotarget 2018; 7:47831-47847. [PMID: 27323862 PMCID: PMC5216982 DOI: 10.18632/oncotarget.10032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 05/23/2016] [Indexed: 01/08/2023] Open
Abstract
Brain tumors such as high grade gliomas are among the deadliest forms of human cancers. The tumor environment is subject to a number of cellular stressors such as hypoxia and glucose deprivation. The persistence of the stressors activates the unfolded proteins response (UPR) and results in global alterations in transcriptional and translational activity of the cell. Although the UPR is known to effect tumorigenesis in some epithelial cancers, relatively little is known about the role of the UPR in brain tumors. Here, we evaluated the changes at the molecular level under homeostatic and stress conditions in two glioma cell lines of differing tumor grade. Using mass spectrometry analysis, we identified proteins unique to each condition (unstressed/stressed) and within each cell line (U87MG and UPN933). Comparing the two, we find differences between both the conditions and cell lines indicating a unique profile for each. Finally, we used our proteomic data to identify the predominant pathways within these cells under unstressed and stressed conditions. Numerous predominant pathways are the same in both cell lines, but there are differences in biological and molecular classifications of the identified proteins, including signaling mechanisms, following UPR induction; we see that relatively minimal proteomic alterations can lead to signaling changes that ultimately promote cell survival.
Collapse
|
6
|
Graner AN, Hellwinkel JE, Lencioni AM, Madsen HJ, Harland TA, Marchando P, Nguyen GJ, Wang M, Russell LM, Bemis LT, Anchordoquy TJ, Graner MW. HSP90 inhibitors in the context of heat shock and the unfolded protein response: effects on a primary canine pulmonary adenocarcinoma cell line. Int J Hyperthermia 2016; 33:303-317. [PMID: 27829290 DOI: 10.1080/02656736.2016.1256503] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Agents targeting HSP90 and GRP94 are seldom tested in stressed contexts such as heat shock (HS) or the unfolded protein response (UPR). Tumor stress often activates HSPs and the UPR as pro-survival mechanisms. This begs the question of stress effects on chemotherapeutic efficacy, particularly with drugs targeting chaperones such as HSP90 or GRP94. We tested the utility of several HSP90 inhibitors, including PU-H71 (targeting GRP94), on a primary canine lung cancer line under HS/UPR stress compared to control conditions. METHODS We cultured canine bronchoalveolar adenocarcinoma cells that showed high endogenous HSP90 and GRP94 expression; these levels substantially increased upon HS or UPR induction. We treated cells with HSP90 inhibitors 17-DMAG, 17-AAG or PU-H71 under standard conditions, HS or UPR. Cell viability/survival was assayed. Antibody arrays measured intracellular signalling and apoptosis profiles. RESULTS HS and UPR had varying effects on cells treated with different HSP90 inhibitors; in particular, HS and UPR promoted resistance to inhibitors in short-term assays, but combinations of UPR stress and PU-H571 showed potent cytotoxic activity in longer-term assays. Array data indicated altered signalling pathways, with apoptotic and pro-survival implications. UPR induction + dual targeting of HSP90 and GRP94 swayed the balance toward apoptosis. CONCLUSION Cellular stresses, endemic to tumors, or interventionally inducible, can deflect or enhance chemo-efficacy, particularly with chaperone-targeting drugs. Stress is likely not held accountable when testing new pharmacologics or assessing currently-used drugs. A better understanding of stress impacts on drug activities should be critical in improving therapeutic targeting and in discerning mechanisms of drug resistance.
Collapse
Affiliation(s)
- Arin N Graner
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA
| | - Justin E Hellwinkel
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA.,b School of Medicine , University of Colorado School of Medicine , Aurora , CO , USA
| | - Alex M Lencioni
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA.,c University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Helen J Madsen
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA.,b School of Medicine , University of Colorado School of Medicine , Aurora , CO , USA
| | - Tessa A Harland
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA.,b School of Medicine , University of Colorado School of Medicine , Aurora , CO , USA
| | - Paul Marchando
- d Department of Chemical and Biological Engineering , University of Colorado Boulder , Boulder , CO , USA
| | - Ger J Nguyen
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA
| | - Mary Wang
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA
| | - Laura M Russell
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA
| | - Lynne T Bemis
- e Department of Biomedical Sciences , University of Minnesota , Duluth , MN , USA
| | - Thomas J Anchordoquy
- f Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Denver , Aurora , CO , USA
| | - Michael W Graner
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA
| |
Collapse
|
7
|
|