Active Targeted Nanoemulsions for Repurposing of Tegaserod in Alzheimer's Disease Treatment.
Pharmaceutics 2021;
13:pharmaceutics13101626. [PMID:
34683919 PMCID:
PMC8540544 DOI:
10.3390/pharmaceutics13101626]
[Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022] Open
Abstract
Background and Purpose: The activation of 5-HT4 receptors with agonists has emerged as a valuable therapeutic strategy to treat Alzheimer’s disease (AD) by enhancing the nonamyloidogenic pathway. Here, the potential therapeutic effects of tegaserod, an effective agent for irritable bowel syndrome, were assessed for AD treatment. To envisage its efficient repurposing, tegaserod-loaded nanoemulsions were developed and functionalized by a blood–brain barrier shuttle peptide. Results: The butyrylcholinesterase inhibitory activity of tegaserod and its neuroprotective cellular effects were highlighted, confirming the interest of this pleiotropic drug for AD treatment. In regard to its drugability profile, and in order to limit its peripheral distribution after IV administration, its encapsulation into monodisperse lipid nanoemulsions (Tg-NEs) of about 50 nm, and with neutral zeta potential characteristics, was performed. The stability of the formulation in stock conditions at 4 °C and in blood biomimetic medium was established. The adsorption on Tg-NEs of peptide-22 was realized. The functionalized NEs were characterized by chromatographic methods (SEC and C18/HPLC) and isothermal titration calorimetry, attesting the efficiency of the adsorption. From in vitro assays, these nanocarriers appeared suitable for enabling tegaserod controlled release without hemolytic properties. Conclusion: The developed peptide-22 functionalized Tg-NEs appear as a valuable tool to allow exploration of the repurposed tegaserod in AD treatment in further preclinical studies.
Collapse