1
|
Li R, Qian Y, Wang J, Han Z, Ye S, Wu S, Qiao A. Structure of human GPR119-G s complex binding APD597 and characterization of GPR119 binding agonists. Front Pharmacol 2024; 15:1310231. [PMID: 38288442 PMCID: PMC10823026 DOI: 10.3389/fphar.2024.1310231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/04/2024] [Indexed: 01/31/2024] Open
Abstract
The rhodopsin-like receptor GPR119 plays a crucial role in glucose homeostasis and is an emerging target for the treatment of type 2 diabetes mellitus. In this study, we analyzed the structure of GPR119 with the agonist APD597 bound and in complex with the downstream G protein trimer by single particle cryo-electron microscopy (cryo-EM). Structural comparison in combination with function assay revealed the conservative and specific effects of different kinds of GPR119 agonists. The activation mechanism of GPR119 was analyzed by comparing the conformational changes between the inactive and active states. The interaction between APD597 derivatives and synthetic agonists with GPR119 was analyzed by molecular docking technique, and the necessary structural framework was obtained. The above conclusions can provide structural and theoretical basis for the development of therapeutic drugs for type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Ruixue Li
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Yuxia Qian
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Jiening Wang
- School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Zhen Han
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Sheng Ye
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Shan Wu
- School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Anna Qiao
- School of Life Sciences, Tianjin University, Tianjin, China
| |
Collapse
|
2
|
Sun D, Yang X, Wu B, Zhang XJ, Li H, She ZG. Therapeutic Potential of G Protein-Coupled Receptors Against Nonalcoholic Steatohepatitis. Hepatology 2021; 74:2831-2838. [PMID: 33826778 DOI: 10.1002/hep.31852] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022]
Affiliation(s)
- Dating Sun
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xia Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal, Wuhan University, Wuhan, China
| | - Bin Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal, Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal, Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Animal, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Tough IR, Forbes S, Herzog H, Jones RM, Schwartz TW, Cox HM. Bidirectional GPR119 Agonism Requires Peptide YY and Glucose for Activity in Mouse and Human Colon Mucosa. Endocrinology 2018; 159:1704-1717. [PMID: 29471473 PMCID: PMC5972582 DOI: 10.1210/en.2017-03172] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/05/2018] [Indexed: 12/22/2022]
Abstract
The lipid sensor G protein-coupled receptor 119 (GPR119) is highly expressed by enteroendocrine L-cells and pancreatic β-cells that release the hormones, peptide YY (PYY) and glucagonlike peptide 1, and insulin, respectively. Endogenous oleoylethanolamide (OEA) and the dietary metabolite, 2-monoacylglycerol (2-OG), can each activate GPR119. Here, we compared mucosal responses with selective, synthetic GPR119 agonists (AR440006 and AR231453) and the lipids, OEA, 2-OG, and N-oleoyldopamine (OLDA), monitoring epithelial ion transport as a readout for L-cell activity in native mouse and human gastrointestinal (GI) mucosae. We also assessed GPR119 modulation of colonic motility in wild-type (WT), GPR119-deficient (GPR119-/-), and PYY-deficient (PYY-/-) mice. The water-soluble GPR119 agonist, AR440006 (that cannot traverse epithelial tight junctions), elicited responses, when added apically or basolaterally in mouse and human colonic mucosae. In both species, GPR119 responses were PYY, Y1 receptor mediated, and glucose dependent. AR440006 efficacy matched the GI distribution of L-cells in WT tissues but was absent from GPR119-/- tissue. OEA and 2-OG responses were significantly reduced in the GPR119-/- colon, but OLDA responses were unchanged. Alternative L-cell activation via free fatty acid receptors 1, 3, and 4 and the G protein-coupled bile acid receptor TGR5 or by the melanocortin 4 receptor, was unchanged in GPR119-/- tissues. The GPR119 agonist slowed transit in WT but not the PYY-/- colon in vitro. AR440006 (intraperitoneally) slowed WT colonic and upper-GI transit significantly in vivo. These data indicate that luminal or blood-borne GPR119 agonism can stimulate L-cell PYY release with paracrine consequences and slower motility. We suggest that this glucose-dependent L-cell response to a gut-restricted GPR119 stimulus has potential therapeutic advantage in modulating insulinotropic signaling with reduced risk of hypoglycemia.
Collapse
Affiliation(s)
- Iain R Tough
- King’s College London, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, London, United Kingdom
| | - Sarah Forbes
- King’s College London, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, London, United Kingdom
| | - Herbert Herzog
- Garvan Institute of Medical Research, Darlinghurst New South Wales, Sydney, Australia
| | - Robert M Jones
- Department of Medicinal Chemistry, Arena Pharmaceuticals, San Diego, California
| | - Thue W Schwartz
- Section for Metabolic Receptology and Enteroendocrinology, Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Helen M Cox
- King’s College London, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, London, United Kingdom
- Correspondence: Helen M. Cox, PhD, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE1 1UL, United Kingdom. E-mail:
| |
Collapse
|
4
|
Affiliation(s)
- Cristina M. Alcántara
- Organic & Pharmaceutical Chemistry Department, Complutense University of Madrid, Madrid, Spain
| | - Andrés R. Alcántara
- Biotransformations Group, Organic & Pharmaceutical Chemistry Department, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
5
|
Ritter K, Buning C, Halland N, Pöverlein C, Schwink L. G Protein-Coupled Receptor 119 (GPR119) Agonists for the Treatment of Diabetes: Recent Progress and Prevailing Challenges. J Med Chem 2015; 59:3579-92. [PMID: 26512410 DOI: 10.1021/acs.jmedchem.5b01198] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this Perspective, recent advances and challenges in the development of GPR119 agonists as new oral antidiabetic drugs will be discussed. Such agonists are expected to exhibit a low risk to induce hypoglycemia as well as to have a beneficial impact on body weight. Many pharmaceutical companies have been active in the search for GPR119 agonists, making it a highly competitive area in the industrial environment. Several GPR119 agonists have been entered into clinical studies, but many have failed either in phase I or II and none has progressed beyond phase II. Herein we describe the strategies chosen by the different medicinal chemistry teams in academia and the pharmaceutical industry to improve potency, physicochemical properties, pharmacokinetics, and the safety profile of GPR119 agonists in the discovery phase in order to improve the odds for successful development.
Collapse
Affiliation(s)
- Kurt Ritter
- Sanofi-Aventis Deutschland GmbH , Building G838, Industriepark Hoechst, 65926 Frankfurt, Germany
| | - Christian Buning
- Sanofi-Aventis Deutschland GmbH , Building G838, Industriepark Hoechst, 65926 Frankfurt, Germany
| | - Nis Halland
- Sanofi-Aventis Deutschland GmbH , Building G838, Industriepark Hoechst, 65926 Frankfurt, Germany
| | - Christoph Pöverlein
- Sanofi-Aventis Deutschland GmbH , Building G838, Industriepark Hoechst, 65926 Frankfurt, Germany
| | - Lothar Schwink
- Sanofi-Aventis Deutschland GmbH , Building G838, Industriepark Hoechst, 65926 Frankfurt, Germany
| |
Collapse
|
6
|
Han S, Narayanan S, Kim SH, Calderon I, Zhu X, Kawasaki A, Yue D, Lehmann J, Wong A, Buzard DJ, Semple G, Carroll C, Chu ZL, Al-Sharmma H, Shu HH, Tung SF, Unett DJ, Behan DP, Yoon WH, Morgan M, Usmani KA, Chen C, Sadeque A, Leonard JN, Jones RM. Discovery of a novel trans-1,4-dioxycyclohexane GPR119 agonist series. Bioorg Med Chem Lett 2015; 25:3034-8. [DOI: 10.1016/j.bmcl.2015.04.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/23/2015] [Accepted: 04/30/2015] [Indexed: 02/06/2023]
|
7
|
Singh A, Falabella J, LaPorte TL, Goswami A. Enzymatic Process for N-Substituted (3S)- and (3R)-3-Hydroxypyrrolidin-2-ones. Org Process Res Dev 2015. [DOI: 10.1021/acs.oprd.5b00084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Amarjit Singh
- Chemical Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - James Falabella
- Chemical Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Thomas L LaPorte
- Chemical Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Animesh Goswami
- Chemical Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
8
|
Discovery and optimization of 5-fluoro-4,6-dialkoxypyrimidine GPR119 agonists. Bioorg Med Chem Lett 2014; 24:4332-5. [DOI: 10.1016/j.bmcl.2014.06.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 06/18/2014] [Accepted: 06/20/2014] [Indexed: 01/19/2023]
|
9
|
Futatsugi K, Mascitti V, Guimarães CR, Morishita N, Cai C, DeNinno MP, Gao H, Hamilton MD, Hank R, Harris AR, Kung DW, Lavergne SY, Lefker BA, Lopaze MG, McClure KF, Munchhof MJ, Preville C, Robinson RP, Wright SW, Bonin PD, Cornelius P, Chen Y, Kalgutkar AS. From partial to full agonism: Identification of a novel 2,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole as a full agonist of the human GPR119 receptor. Bioorg Med Chem Lett 2013. [DOI: 10.1016/j.bmcl.2012.10.119] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Wellenzohn B, Lessel U, Beller A, Isambert T, Hoenke C, Nosse B. Identification of New Potent GPR119 Agonists by Combining Virtual Screening and Combinatorial Chemistry. J Med Chem 2012; 55:11031-41. [DOI: 10.1021/jm301549a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bernd Wellenzohn
- Research Germany/Lead Identification and Optimization Support, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Uta Lessel
- Research Germany/Lead Identification and Optimization Support, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Andreas Beller
- Research Germany/Medicinal Chemistry/Combinatorial Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Timo Isambert
- Research Germany/Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Christoph Hoenke
- Research Germany/Medicinal Chemistry/Combinatorial Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Bernd Nosse
- Research Germany/Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| |
Collapse
|