1
|
Design and Characterization of a Novel Hapten and Preparation of Monoclonal Antibody for Detecting Atrazine. Foods 2022; 11:foods11121726. [PMID: 35741925 PMCID: PMC9223028 DOI: 10.3390/foods11121726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
This study provides the first design and synthetic protocol for preparing highly sensitive and specific atrazine (ATR) monoclonal antibodies (mAbs). In this work, a previously unreported hapten, 2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine, was designed and synthesized, which maximally exposed the characteristic amino group ATR to an animal immune system to induce the expected antibody. The molecular weight of the ATR hapten was 259.69 Da, and its purity was 97.8%. The properties of the anti-ATR mAb were systematically characterized. One 9F5 mAb, which can detect ATR, was obtained with an IC50 value (the concentration of analyte that produced 50% inhibition of ATR) of 1.678 µg/L for ATR. The molecular weight for the purified 9F5 mAb was approximately 52 kDa for the heavy chain and 15 kDa for the light chain. The anti-ATR mAb prepared in this study was the IgG1 type. The working range of the standard curve (IC20 (the concentration of analyte that produced 20% inhibition of ATR)-IC80 (the concentration of analyte that produced 80% inhibition of ATR)) was 0.384 to 11.565 µg/L. The prepared anti-ATR mAb had high specificity, sensitivity, and affinity with low cross-reactivity. The prepared anti-ATR mAb could provide the core raw material for establishing an ATR immunoassay.
Collapse
|
2
|
Isozaki Y, Tsumoto K, Tomita M. Conformation-specific monoclonal antibodies recognizing the native structure of G protein-coupled receptor (GPCR). Int Immunopharmacol 2021; 98:107872. [PMID: 34182241 DOI: 10.1016/j.intimp.2021.107872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 01/03/2023]
Abstract
It is quite difficult to generate monoclonal antibodies that recognize the three-dimensional structures of the antigens of interest. To address this limitation, we developed a new hybridoma technology termed "optimized stereospecific targeting (SST)". Here we aimed at generating stereospecific monoclonal antibodies against a G protein-coupled receptor (GPCR). The optimized SST technique enabled the efficient production of conformation-specific monoclonal antibodies against human corticotropin-releasing hormone receptor 1 (huCRHR1). Hybridoma cells secreting stereospecific monoclonal antibodies were selectively cloned by a limiting dilution method and the target monoclonal antibodies were purified by protein A column chromatography. They specifically cross-reacted with native huCRHR1 expressed on the surface of CHO cells, whereas they showed no affinity for MDA-MB-231 cancer cells, which abundantly express EphA2 on the cell surface. Furthermore, immunofluorescence analysis revealed that treatment of huCRHR1-expressing CHO cells with 4% paraformaldehyde led to a decrease in the affinity of purified monoclonal antibodies for intact huCRHR1 on the cell surface. In addition, purified monoclonal antibodies showed no cross-reactivity with huCRHR1 expressed on Sf9 insect cells. These results strongly suggest that monoclonal antibodies generated by the optimized SST technique feature specific binding to the intact form of the target GPCR on mammalian cells.
Collapse
Affiliation(s)
- Yushi Isozaki
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan.
| | - Kanta Tsumoto
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
| | - Masahiro Tomita
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
3
|
Optimization of stereospecific targeting technique for selective production of monoclonal antibodies against native ephrin type-A receptor 2. J Immunol Methods 2020; 484-485:112813. [DOI: 10.1016/j.jim.2020.112813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/24/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022]
|
4
|
Parray HA, Shukla S, Samal S, Shrivastava T, Ahmed S, Sharma C, Kumar R. Hybridoma technology a versatile method for isolation of monoclonal antibodies, its applicability across species, limitations, advancement and future perspectives. Int Immunopharmacol 2020; 85:106639. [PMID: 32473573 PMCID: PMC7255167 DOI: 10.1016/j.intimp.2020.106639] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/06/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
Abstract
The advancements in technology and manufacturing processes have allowed the development of new derivatives, biosimilar or advanced improved versions for approved antibodies each year for treatment regimen. There are more than 700 antibody-based molecules that are in different stages of phase I/II/ III clinical trials targeting new unique targets. To date, approximately more than 80 monoclonal antibodies (mAbs) have been approved. A total of 7 novel antibody therapeutics had been granted the first approval either in the United States or European Union in the year 2019, representing approximately 20% of the total number of approved drugs. Most of these licenced mAbs or their derivatives are either of hybridoma origin or their improvised engineered versions. Even with the recent development of high throughput mAb generation technologies, hybridoma is the most favoured method due to its indigenous nature to preserve natural cognate antibody pairing information and preserves innate functions of immune cells. The recent advent of antibody engineering technology has superseded the species level barriers and has shown success in isolation of hybridoma across phylogenetically distinct species. This has led to the isolation of monoclonal antibodies against human targets that are conserved and non-immunogenic in the rodent. In this review, we have discussed in detail about hybridoma technology, its expansion towards different animal species, the importance of antibodies isolated from different animal sources that are useful in biological applications, advantages, and limitations. This review also summarizes the challenges and recent progress associated with hybridoma development, and how it has been overcome in these years to provide new insights for the isolation of mAbs.
Collapse
Affiliation(s)
- Hilal Ahmed Parray
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shivangi Shukla
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shubbir Ahmed
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Chandresh Sharma
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India.
| | - Rajesh Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India.
| |
Collapse
|
5
|
Gauzy-Lazo L, Sassoon I, Brun MP. Advances in Antibody–Drug Conjugate Design: Current Clinical Landscape and Future Innovations. SLAS DISCOVERY 2020; 25:843-868. [DOI: 10.1177/2472555220912955] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The targeted delivery of potent cytotoxic molecules into cancer cells is considered a promising anticancer strategy. The design of clinically effective antibody–drug conjugates (ADCs), in which biologically active drugs are coupled through chemical linkers to monoclonal antibodies, has presented challenges for pharmaceutical researchers. After 30 years of intensive research and development activities, only seven ADCs have been approved for clinical use; two have received fast-track designation and two breakthrough therapy designation from the Food and Drug Administration. There is continued interest in the field, as documented by the growing number of candidates in clinical development. This review aims to summarize the most recent innovations that have been applied to the design of ADCs undergoing early- and late-stage clinical trials. Discovery and rational optimization of new payloads, chemical linkers, and antibody formats have improved the therapeutic index of next-generation ADCs, ultimately resulting in improved clinical benefit for the patients.
Collapse
Affiliation(s)
| | - Ingrid Sassoon
- Immuno-Oncology Therapeutic Area, Sanofi, Vitry-sur-Seine, France
| | | |
Collapse
|
6
|
Tsumoto K, Isozaki Y, Yagami H, Tomita M. Future perspectives of therapeutic monoclonal antibodies. Immunotherapy 2019; 11:119-127. [PMID: 30730271 DOI: 10.2217/imt-2018-0130] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Attention to therapeutic monoclonal antibodies has been dramatically increasing year by year. Their highly specific targeting of antigens can provide very effective medical treatment, and the advent of molecular-targeting medicine is allowing development of a new generation of therapeutic agents. However, there is one critical obstacle to overcome. Most of the established therapeutic monoclonal antibodies have specificity for the primary structures of target antigens, although all proteins harbor original native intact structures for their own specific functions. Stereo-specific monoclonal antibodies recognizing conformational structures of target antigens may thus offer a markedly more versatile approach. Their application may change the very concepts underlying use of therapeutic antibodies.
Collapse
Affiliation(s)
- Kanta Tsumoto
- Molecular Bioengineering Laboratory, Division of Chemistry for Materials, 1577 Kurima-Machiya-cho, Tsu, Mie 514-8507, Japan
| | - Yushi Isozaki
- Molecular Bioengineering Laboratory, Division of Chemistry for Materials, 1577 Kurima-Machiya-cho, Tsu, Mie 514-8507, Japan
| | - Hisanori Yagami
- Intelectual Property Office (IPO), Organization for the Promotion of Regional Innovation, 1577 Kurima-Machiya-cho, Tsu, Mie 514-8507, Japan
| | - Masahiro Tomita
- Molecular Bioengineering Laboratory, Division of Chemistry for Materials, 1577 Kurima-Machiya-cho, Tsu, Mie 514-8507, Japan
| |
Collapse
|
7
|
Garranzo-Asensio M, Guzmán-Aránguez A, Povés C, Fernández-Aceñero MJ, Montero-Calle A, Ceron MÁ, Fernandez-Diez S, Rodríguez N, Gómez de Cedrón M, Ramírez de Molina A, Domínguez G, Barderas R. The specific seroreactivity to ∆Np73 isoforms shows higher diagnostic ability in colorectal cancer patients than the canonical p73 protein. Sci Rep 2019; 9:13547. [PMID: 31537884 PMCID: PMC6753153 DOI: 10.1038/s41598-019-49960-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/31/2019] [Indexed: 02/05/2023] Open
Abstract
The p53-family is tightly regulated at transcriptional level. Due to alternative splicing, up to 40 different theoretical proteoforms have been described for p73 and at least 20 and 10 for p53 and p63, respectively. However, only the canonical proteins have been evaluated as autoantibody targets in cancer patients for diagnosis. In this study, we have cloned and expressed in vitro the most upregulated proteoforms of p73, ΔNp73α and ΔNp73β, for the analysis of their seroreactivity by a developed luminescence based immunoassay test using 145 individual plasma from colorectal cancer, premalignant individuals and healthy controls. ∆Np73α seroreactivity showed the highest diagnostic ability to discriminate between groups. The combination of ∆Np73α, ∆Np73β and p73 proteoforms seroreactivity were able to improve their individual diagnostic ability. Competitive inhibition experiments further demonstrated the presence of unique specific epitopes in ΔNp73 isoforms not present in p73, with several colorectal patients showing unique and specific seroreactivity to the ΔNp73 proteoforms. Overall, we have increased the complexity of the humoral immune response to the p53-family in cancer patients, showing that the proteoforms derived from the alternative splicing of p73 possess a higher diagnostic ability than the canonical protein, which might be extensive for p53 and p63 proteins.
Collapse
Affiliation(s)
- María Garranzo-Asensio
- Departamento de Bioquímica y Biología Molecular, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, E-28040, Madrid, Spain
- UFIEC, Chronic Disease Programme, Instituto de Salud Carlos III, Majadahonda, E-28220, Madrid, Spain
| | - Ana Guzmán-Aránguez
- Departamento de Bioquímica y Biología Molecular, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, E-28040, Madrid, Spain
| | - Carmen Povés
- Gastroenterology Unit, Hospital Universitario Clínico San Carlos, E-28040, Madrid, Spain
| | | | - Ana Montero-Calle
- UFIEC, Chronic Disease Programme, Instituto de Salud Carlos III, Majadahonda, E-28220, Madrid, Spain
| | - María Ángeles Ceron
- Surgical Pathology Department, Hospital Universitario Clínico San Carlos, E-28040, Madrid, Spain
| | | | - Nuria Rodríguez
- Medical Oncology Department, Hospital Universitario La Paz, E-28046, Madrid, Spain
| | - Marta Gómez de Cedrón
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA-FOOD, E-28049, Madrid, Spain
| | - Ana Ramírez de Molina
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA-FOOD, E-28049, Madrid, Spain
| | - Gemma Domínguez
- Departamento de Medicina, Facultad de Medicina, Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, E-28029, Madrid, Spain.
| | - Rodrigo Barderas
- UFIEC, Chronic Disease Programme, Instituto de Salud Carlos III, Majadahonda, E-28220, Madrid, Spain.
| |
Collapse
|
8
|
Varkey R, Du Q, Karnell JL, Xiao X, Casey KA, Woods R, Rosenthal K, Wilson S, Dall’Acqua WF, Wu H, Herbst R, Ettinger R, Damschroder M. Discovery and characterization of potent IL-21 neutralizing antibodies via a novel alternating antigen immunization and humanization strategy. PLoS One 2019; 14:e0211236. [PMID: 30682117 PMCID: PMC6347146 DOI: 10.1371/journal.pone.0211236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/09/2019] [Indexed: 01/06/2023] Open
Abstract
Interleukin-21 (IL-21), a member of the common cytokine receptor γ chain (γc) family, is secreted by CD4+ T cells and natural killer T cells and induces effector function through interactions with the IL-21 receptor (IL-21R)/γc complex expressed on both immune and non-immune cells. Numerous studies suggest that IL-21 plays a significant role in autoimmune disorders. Therapeutic intervention to disrupt the IL-21/IL-21R/γc interaction and inhibit subsequent downstream signal transduction could offer a treatment paradigm for these diseases. Potent neutralizing antibodies reported in the literature were generated after extensive immunizations with human IL-21 alone and in combination with various adjuvants. To circumvent the laborious method of antibody generation while targeting a conserved functional epitope, we designed a novel alternating-antigen immunization strategy utilizing both human and cynomolgus monkey (cyno) IL-21. Despite the high degree of homology between human and cyno IL-21, our alternating-immunization strategy elicited higher antibody titers and more potent neutralizing hybridomas in mice than did the immunization with human IL-21 antigen alone. The lead hybridoma clone was humanized by grafting the murine complementarity-determining regions onto human germline framework templates, using a unique rational design. The final humanized and engineered antibody, MEDI7169, encodes only one murine residue at the variable heavy/light-chain interface, retains the sub-picomolar affinity for IL-21, specifically inhibits IL-21/IL-21R-mediated signaling events and is currently under clinical development as a potential therapeutic agent for autoimmune diseases. This study provides experimental evidence of the immune system's potential to recognize and respond to shared epitopes of antigens from distinct species, and presents a generally applicable, novel method for the rapid generation of exceptional therapeutic antibodies using the hybridoma platform.
Collapse
Affiliation(s)
- Reena Varkey
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland, United States of America
| | - Qun Du
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland, United States of America
| | - Jodi L. Karnell
- Department of Respiratory, Inflammation, and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, United States of America
| | - Xiaodong Xiao
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland, United States of America
| | - Kerry A. Casey
- Department of Respiratory, Inflammation, and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, United States of America
| | - Rob Woods
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland, United States of America
| | - Kim Rosenthal
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland, United States of America
| | - Susan Wilson
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland, United States of America
| | - William F. Dall’Acqua
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland, United States of America
| | - Herren Wu
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland, United States of America
| | - Ronald Herbst
- Department of Respiratory, Inflammation, and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, United States of America
| | - Rachel Ettinger
- Department of Respiratory, Inflammation, and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, United States of America
| | - Melissa Damschroder
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland, United States of America
- * E-mail:
| |
Collapse
|
9
|
Rokni M, Razavi AR, Shokri F, Ahmadi Kia K, Solaymani-Mohammadi F, Chahardoli R, Saboor-Yaraghi AA. Enhancement of monoclonal antibody production after single and combination treatment of the hybridoma cells with all-trans retinoic acid and docosahexaenoic acid: An in vitro and in vivo study. Int Immunopharmacol 2018; 59:295-300. [DOI: 10.1016/j.intimp.2018.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 02/07/2023]
|
10
|
Pirkkanen JS, Boreham DR, Mendonca MS. The CGL1 (HeLa × Normal Skin Fibroblast) Human Hybrid Cell Line: A History of Ionizing Radiation Induced Effects on Neoplastic Transformation and Novel Future Directions in SNOLAB. Radiat Res 2017; 188:512-524. [PMID: 28873027 DOI: 10.1667/rr14911.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cellular transformation assays have been utilized for many years as powerful in vitro methods for examining neoplastic transformation potential/frequency and mechanisms of carcinogenesis for both chemical and radiological carcinogens. These mouse and human cell based assays are labor intensive but do provide quantitative information on the numbers of neoplastically transformed foci produced after carcinogenic exposure and potential molecular mechanisms involved. Several mouse and human cell systems have been generated to undertake these studies, and they vary in experimental length and endpoint assessment. The CGL1 human cell hybrid neoplastic model is a non-tumorigenic pre-neoplastic cell that was derived from the fusion of HeLa cervical cancer cells and a normal human skin fibroblast. It has been utilized for the several decades to study the carcinogenic/neoplastic transformation potential of a variety of ionizing radiation doses, dose rates and radiation types, including UV, X ray, gamma ray, neutrons, protons and alpha particles. It is unique in that the CGL1 assay has a relatively short assay time of 18-21 days, and rather than relying on morphological endpoints to detect neoplastic transformation utilizes a simple staining method that detects the tumorigenic marker alkaline phosphatase on the neoplastically transformed cells cell surface. In addition to being of human origin, the CGL1 assay is able to detect and quantify the carcinogenic potential of very low doses of ionizing radiation (in the mGy range), and utilizes a neoplastic endpoint (re-expression of alkaline phosphatase) that can be detected on both viable and paraformaldehyde fixed cells. In this article, we review the history of the CGL1 neoplastic transformation model system from its initial development through the wide variety of studies examining the effects of all types of ionizing radiation on neoplastic transformation. In addition, we discuss the potential of the CGL1 model system to investigate the effects of near zero background radiation levels available within the radiation biology lab we have established in SNOLAB.
Collapse
Affiliation(s)
- Jake S Pirkkanen
- a Department of Biology, Laurentian University, Sudbury, Ontario, Canada, P3E 2C6
| | - Douglas R Boreham
- a Department of Biology, Laurentian University, Sudbury, Ontario, Canada, P3E 2C6.,b Northern Ontario School of Medicine, Sudbury, Ontario, Canada, P3E 2C6.,c Bruce Power, Tiverton, Ontario, Canada, N0G 2T0
| | - Marc S Mendonca
- d Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, and Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
11
|
Xu X, Zhang R, Chen X. Application of a single-chain fragment variable (scFv) antibody for the confirmatory diagnosis of hydatid disease in non-endemic areas. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
12
|
Generation of monoclonal pan-hemagglutinin antibodies for the quantification of multiple strains of influenza. PLoS One 2017; 12:e0180314. [PMID: 28662134 PMCID: PMC5491208 DOI: 10.1371/journal.pone.0180314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/13/2017] [Indexed: 11/27/2022] Open
Abstract
Vaccination is the most effective course of action to prevent influenza. About 150 million doses of influenza vaccines were distributed for the 2015–2016 season in the USA alone according to the Centers for Disease Control and Prevention. Vaccine dosage is calculated based on the concentration of hemagglutinin (HA), the main surface glycoprotein expressed by influenza which varies from strain to strain. Therefore yearly-updated strain-specific antibodies and calibrating antigens are required. Preparing these quantification reagents can take up to three months and significantly slows down the release of new vaccine lots. Therefore, to circumvent the need for strain-specific sera, two anti-HA monoclonal antibodies (mAbs) against a highly conserved sequence have been produced by immunizing mice with a novel peptide-conjugate. Immunoblots demonstrate that 40 strains of influenza encompassing HA subtypes H1 to H13, as well as B strains from the Yamagata and Victoria lineage were detected when the two mAbs are combined to from a pan-HA mAb cocktail. Quantification using this pan-HA mAbs cocktail was achieved in a dot blot assay and results correlated with concentrations measured in a hemagglutination assay with a coefficient of correlation of 0.80. A competitive ELISA was also optimised with purified viral-like particles. Regardless of the quantification method used, pan-HA antibodies can be employed to accelerate process development when strain-specific antibodies are not available, and represent a valuable tool in case of pandemics. These antibodies were also expressed in CHO cells to facilitate large-scale production using bioreactor technologies which might be required to meet industrial needs for quantification reagents. Finally, a simulation model was created to predict the binding affinity of the two anti-HA antibodies to the amino acids composing the highly conserved epitope; different probabilities of interaction between a given amino acid and the antibodies might explain the affinity of each antibody against different influenza strains.
Collapse
|
13
|
Katchman BA, Barderas R, Alam R, Chowell D, Field MS, Esserman LJ, Wallstrom G, LaBaer J, Cramer DW, Hollingsworth MA, Anderson KS. Proteomic mapping of p53 immunogenicity in pancreatic, ovarian, and breast cancers. Proteomics Clin Appl 2016; 10:720-31. [PMID: 27121307 PMCID: PMC5553208 DOI: 10.1002/prca.201500096] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 02/29/2016] [Accepted: 04/20/2016] [Indexed: 11/08/2022]
Abstract
PURPOSE Mutations in TP53 induce autoantibody immune responses in a subset of cancer patients, which have been proposed as biomarkers for early detection. Here, we investigate the association of p53-specific autoantibodies with multiple tumor subtypes and determine the association with p53 mutation status and epitope specificity. EXPERIMENTAL DESIGN IgG p53 autoantibodies (p53-AAb), were quantified in 412 serum samples using a programmable ELISA assay from patients with serous ovarian, pancreatic adenocarcinoma, and breast cancer. To determine if patients generated mutation-specific autoantibodies we designed a panel of the most relevant 51 p53 point mutant proteins, to be displayed on custom programmable protein microarrays. To determine the epitope specificity we displayed 12 overlapping tiling fragments and 38 N- and C-terminal deletions spanning the length of the wild-type p53 protein. RESULTS We detected p53-AAb with sensitivities of 58.8% (ovarian), 22% (pancreatic), 32% (triple negative breast cancer), and 10.2% (HER2+ breast cancer) at 94% specificity. Sera with p53-AAb contained broadly reactive autoantibodies to 51 displayed p53 mutant proteins, demonstrating a polyclonal response to common epitopes. All p53-AAb displayed broad polyclonal immune response to both continuous and discontinuous epitopes at the N- and C-terminus as well as the DNA-binding domain. CONCLUSION AND CLINICAL RELEVANCE In this comprehensive analysis, mutations in tumor p53 induce strong, polyclonal autoantibodies with broadly reactive epitope specificity.
Collapse
Affiliation(s)
- Benjamin A. Katchman
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Rodrigo Barderas
- Biochemistry and Molecular Biology I Department, Complutense University, Madrid, Spain
| | - Rizwan Alam
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Diego Chowell
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Matthew S. Field
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Laura J. Esserman
- Department of Surgery, University of California, San Francisco, CA, USA
| | - Garrick Wallstrom
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Joshua LaBaer
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Daniel W. Cramer
- Department of Gynecology and Reproductive Biology, Brigham and Women’s Hospital, Boston, MA
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Karen S. Anderson
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
14
|
Bonvin P, Venet S, Fontaine G, Ravn U, Gueneau F, Kosco-Vilbois M, Proudfoot AE, Fischer N. De novo isolation of antibodies with pH-dependent binding properties. MAbs 2015; 7:294-302. [PMID: 25608219 PMCID: PMC4623423 DOI: 10.1080/19420862.2015.1006993] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
pH-dependent antibodies are engineered to release their target at a slightly acidic pH, a property making them suitable for clinical as well as biotechnological applications. Such antibodies were previously obtained by histidine scanning of pre-existing antibodies, a labor-intensive strategy resulting in antibodies that displayed residual binding to their target at pH 6.0. We report here the de novo isolation of pH-dependent antibodies selected by phage display from libraries enriched in histidines. Strongly pH-dependent clones with various affinity profiles against CXCL10 were isolated by this method. Our best candidate has nanomolar affinity for CXCL10 at pH 7.2, but no residual binding was detected at pH 6.0. We therefore propose that this new process is an efficient strategy to generate pH-dependent antibodies.
Collapse
Key Words
- BLI, bio-layer interferometry
- CDR, complementary determining region
- CDRH, CDR of the heavy chain
- CDRL, CDR of the light chain
- ELISA, enzyme-linked immunosorbent assay
- GPCR, G protein-coupled receptor
- KB, kinetic buffer
- PBS, phosphate buffered saline
- SPR, surface plasmon resonance
- antibody recycling
- chemokine
- histidine
- mAb, monoclonal antibody
- monoclonal antibody
- pH-dependency
- phage display
- phage libraries
- scFv, single-chain variable fragment
Collapse
|
15
|
Deyev SM, Lebedenko EN, Petrovskaya LE, Dolgikh DA, Gabibov AG, Kirpichnikov MP. Man-made antibodies and immunoconjugates with desired properties: function optimization using structural engineering. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4459] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Goldgur Y, Susi P, Karelehto E, Sanmark H, Lamminmäki U, Oricchio E, Wendel HG, Nikolov DB, Himanen JP. Generation and characterization of a single-chain anti-EphA2 antibody. Growth Factors 2014; 32:214-22. [PMID: 25494541 PMCID: PMC4335687 DOI: 10.3109/08977194.2014.983225] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recombinant antibody phage library technology provides multiple advantages, including that human antibodies can be generated against proteins that are highly conserved between species. We used this technology to isolate and characterize an anti-EphA2 single-chain antibody. We show that the antibody binds the antigen with 1:1 stoichiometry and has high specificity for EphA2. The crystal structure of the complex reveals that the antibody targets the same receptor surface cavity as the ephrin ligand. Specifically, a lengthy CDR-H3 loop protrudes deep into the ligand-binding cavity, with several hydrophobic residues at its tip forming an anchor-like structure buried within the hydrophobic Eph pocket, in a way similar to the ephrin receptor-binding loop in the Eph/ephrin structures. Consequently, the antibody blocks ephrin binding to EphA2. Furthermore, it induces apoptosis and reduces cell proliferation in lymphoma cells lines. Since Ephs are important mediators of tumorigenesis, such antibodies could have applications both in research and therapy.
Collapse
Affiliation(s)
- Yehuda Goldgur
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center , New York, NY , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Xie W, Li D, Zhang J, Li Z, Acheampong DO, He Y, Wang Y, Chen Z, Wang M. Generation and characterization of a novel human IgG1 antibody against vascular endothelial growth factor receptor 2. Cancer Immunol Immunother 2014; 63:877-88. [PMID: 24893856 PMCID: PMC11028991 DOI: 10.1007/s00262-014-1560-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 05/16/2014] [Indexed: 12/17/2022]
Abstract
VEGF and its receptors, especially VEGFR2 (KDR), are known to play a critical role in angiogenesis under both physiological and pathological conditions, including cancer and angiogenic retinopathies. This study was aimed at developing a fully human IgG1 antibody (mAb-04) constructed from a phage-derived scFv, targeting the VEGF/VEGFR2 pathway. Firstly, an innovative transfection system, containing two recombinant expression vectors (pMH3 and pCApuro), were introduced into CHO-s cells and clones with higher yield selected accordingly. After an optimal fermentation condition was determined, fed-batch fermentation was performed in 5-L bioreactor with a final yield up to 60 mg/L. Further, cell proliferation, wound healing, transwell invasion, tube formation and chick embryo chorioallantoic membrane assays showed significant anti-angiogenic activity of mAb-04 in vitro and in vivo. In addition, the results of Western blotting indicated the ability of mAb-04 to inhibit VEGF-induced VEGFR2 signaling pathway. Finally, ADCC assay demonstrated that mAb-04 is capable of mediating tumor cell killing in presence of effector cells. This study has therefore proved that the full-length antibody targeting human VEGFR2 has potential clinical applications in the treatment of cancer and other diseases where pathological angiogenesis is involved.
Collapse
Affiliation(s)
- Wei Xie
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 154#, Tong Jia Xiang 24, Nanjing, 210009 People’s Republic of China
| | - Daojuan Li
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 154#, Tong Jia Xiang 24, Nanjing, 210009 People’s Republic of China
| | - Juan Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 154#, Tong Jia Xiang 24, Nanjing, 210009 People’s Republic of China
| | - Zhike Li
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 154#, Tong Jia Xiang 24, Nanjing, 210009 People’s Republic of China
| | - Desmond Omane Acheampong
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 154#, Tong Jia Xiang 24, Nanjing, 210009 People’s Republic of China
| | - Yuan He
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 154#, Tong Jia Xiang 24, Nanjing, 210009 People’s Republic of China
| | - Youfu Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 154#, Tong Jia Xiang 24, Nanjing, 210009 People’s Republic of China
| | - Zhiguo Chen
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 154#, Tong Jia Xiang 24, Nanjing, 210009 People’s Republic of China
| | - Min Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 154#, Tong Jia Xiang 24, Nanjing, 210009 People’s Republic of China
| |
Collapse
|