1
|
Sato Y, Nakamura T, Yamada Y, Harashima H. The impact of, and expectations for, lipid nanoparticle technology: From cellular targeting to organelle targeting. J Control Release 2024; 370:516-527. [PMID: 38718875 DOI: 10.1016/j.jconrel.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
The success of mRNA vaccines against COVID-19 has enhanced the potential of lipid nanoparticles (LNPs) as a system for the delivery of mRNA. In this review, we describe our progress using a lipid library to engineer ionizable lipids and promote LNP technology from the viewpoints of safety, controlled biodistribution, and mRNA vaccines. These advancements in LNP technology are applied to cancer immunology, and a potential nano-DDS is constructed to evaluate immune status that is associated with a cancer-immunity cycle that includes the sub-cycles in tumor microenvironments. We also discuss the importance of the delivery of antigens and adjuvants in enhancing the cancer-immunity cycle. Recent progress in NK cell targeting in cancer immunotherapy is also introduced. Finally, the impact of next-generation DDS technology is explained using the MITO-Porter membrane fusion-based delivery system for the organelle targeting of the mitochondria. We introduce a successful example of the MITO-Porter used in a cell therapeutic strategy to treat cardiomyopathy.
Collapse
Affiliation(s)
- Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | | |
Collapse
|
2
|
Yang ZM, Huang X, Liu SH, Deng LS, Wang X. Sustained release gel based on CT image inspection for treatment of diabetes fundus macular lesions. Med Eng Phys 2024; 126:104148. [PMID: 38621848 DOI: 10.1016/j.medengphy.2024.104148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/23/2024] [Accepted: 03/09/2024] [Indexed: 04/17/2024]
Abstract
Currently, slow-release gel therapy is considered to be an effective treatment for fundus macular disease, but the lack of effective evaluation methods limits its clinical application. Therefore, the purpose of this study was to investigate the application and clinical effect of slow-release gel based on CT image examination in the treatment of diabetic fundus macular disease. CT images of fundus macular lesions were collected in a group of diabetic patients. Then the professional image processing software is used to process and analyze the image and extract the key parameters. A slow-release gel was designed and prepared, and applied to the treatment of diabetic fundus macular disease. CT images before and after treatment were compared and analyzed, and the effect of slow-release gel was evaluated. In a certain period of time after treatment, the lesion size and lesion degree of diabetic fundus macular disease were significantly improved by using slow-release gel therapy with CT image examination. No significant adverse reactions or complications were observed during the treatment. This indicates that the slow-release gel based on CT image examination is a safe, effective and feasible treatment method for diabetic fundus macular disease. This method can help improve the vision and quality of life of patients, and provide a new idea and plan for clinical treatment.
Collapse
Affiliation(s)
- Zhu-Min Yang
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Xing Huang
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Sheng-Hui Liu
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Li-Shi Deng
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Xian Wang
- Department of Ophthalmology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
3
|
Nakamura T, Nakade T, Sato Y, Harashima H. Delivering mRNA to a human NK cell line, NK-92 cells, by lipid nanoparticles. Int J Pharm 2023; 636:122810. [PMID: 36898618 DOI: 10.1016/j.ijpharm.2023.122810] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/16/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023]
Abstract
In cancer immunotherapy, therapeutic methods targeting NK are highly expected. NK cell-based therapy using NK-92, a human NK cell line, has been clinically evaluated. Delivering mRNA into NK-92 cells is a potent strategy for enhancing its functions. However, the use of lipid nanoparticles (LNP) for this purpose has not yet been evaluated. We previously developed a LNP that was composed of CL1H6 (CL1H6-LNP) for the efficient delivery of siRNA to NK-92 cells, and the use of this material for delivering mRNA to NK-92 cells is reported in this study. Compared with a DLin-MC3-DMA based LNP, used as a benchmark, the CL1H6-LNP caused a high mRNA expression intensity and a cell transfection efficiency of 100%. The efficient mRNA delivery by this CL1H6-LNP is attributed to the high affinity for NK-92 cells and the intense, rapid fusion with the endosomal membrane. It therefore appears that the CL1H6-LNP could be a useful non-viral vector for modifying the NK-92 functions by mRNA. Our findings also provide some insights into the design and development of LNPs for delivering mRNA to NK-92 and NK cells.
Collapse
Affiliation(s)
- Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Taisei Nakade
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
4
|
Michlewska S, Maly M, Wójkowska D, Karolczak K, Skiba E, Hołota M, Kubczak M, Ortega P, Watala C, Javier de la Mata F, Bryszewska M, Ionov M. Carbosilane ruthenium metallodendrimer as alternative anti-cancer drug carrier in triple negative breast cancer mouse model: A preliminary study. Int J Pharm 2023; 636:122784. [PMID: 36858135 DOI: 10.1016/j.ijpharm.2023.122784] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023]
Abstract
The carbosilane metallodendrimer G1-[[NCPh(o-N)Ru(η6- p-cymene)Cl]Cl]4 (CRD13), based on an arene Ru(II) complex coordinated to imino-pyridine surface groups, has been conjugated with anti-cancer drugs. Ruthenium in the positively-charged dendrimer structure allows this nanoparticle to be considered as an anticancer drug carrier, made more efficient because ruthenium has anticancer properties. The ability of CRD13 to form complexes with Doxorubicin (DOX), 5-Fluorouracil (5-Fu), and Methotrexate (MTX) has been evaluated using zeta potential measurement, transmission electron microscopy (TEM) and computer simulation. The results show that it forms stable nanocomplexes with all those drugs, enhancing their effectiveness against MDA-MB-231 cancer cells. In vivo tests indicate that the CRD13/DOX system caused a decrease of tumor weight in mice with triple negative breast cancer. However, the tumors were most visibly reduced when naked dendrimers were injected.
Collapse
Affiliation(s)
- Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Poland; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland.
| | - Marek Maly
- Department of Physics, Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 400 96 Ústí nad Labem, Czech Republic
| | - Dagmara Wójkowska
- Department of Haemostatic Disorders, Faculty of Health Sciences, Medical University of Lodz, Mazowiecka st. 6/8, 92-215 Lodz, Poland
| | - Kamil Karolczak
- Department of Haemostatic Disorders, Faculty of Health Sciences, Medical University of Lodz, Mazowiecka st. 6/8, 92-215 Lodz, Poland
| | - Elżbieta Skiba
- Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Marcin Hołota
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Małgorzata Kubczak
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Paula Ortega
- Universidad de Alcalá, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid, Spain; Instituto de Investigación Sanitaria Ramón y Cajal, IRYCIS, Spain
| | - Cezary Watala
- Department of Haemostatic Disorders, Faculty of Health Sciences, Medical University of Lodz, Mazowiecka st. 6/8, 92-215 Lodz, Poland
| | - F Javier de la Mata
- Universidad de Alcalá, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid, Spain; Instituto de Investigación Sanitaria Ramón y Cajal, IRYCIS, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| |
Collapse
|
5
|
Guo S, Feng J, Li Z, Yang S, Qiu X, Xu Y, Shen Z. Improved cancer immunotherapy strategies by nanomedicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1873. [PMID: 36576112 DOI: 10.1002/wnan.1873] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/29/2022]
Abstract
Cancer immunotherapy agents fight cancer via immune system stimulation and have made significant advances in minimizing side effects and prolonging the survival of patients with solid tumors. However, major limitations still exist in cancer immunotherapy, including the inefficiency of immune response stimulation in specific cancer types, therapy resistance caused by the tumor microenvironment (TME), toxicities by the immune imbalance, and short lifetime of stimulator of interferon genes (STING) agonist. Recent advances in nanomedicine have shown significant potential in overcoming the obstacles of cancer immunotherapy. Several nanoscale agents have been reported for cancer immunotherapy, including nanoscale cancer vaccines impacting the STING pathway, nanomaterials reprogramming TME, nano-agents triggering immune response with immune checkpoint inhibitor synergy, ferroptosis-mediated and indoleamine-2,3-dioxygenase immunosuppression-mediated cancer immunotherapy, and nanomedicine-meditated chimeric antigen receptor-T-cell therapy. Herein, we summarize the major advances and innovations in nanomedicine-based cancer immunotherapy, and outline the opportunities and challenges to integrate more advanced nanomaterials into cancer immunotherapy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Shuai Guo
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Feng
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zongheng Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
| | - Sugeun Yang
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, South Korea
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yikai Xu
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zheyu Shen
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Khalifa AM, Nakamura T, Sato Y, Sato T, Hyodo M, Hayakawa Y, Harashima H. Interval- and cycle-dependent combined effect of STING agonist loaded lipid nanoparticles and a PD-1 antibody. Int J Pharm 2022; 624:122034. [PMID: 35863595 DOI: 10.1016/j.ijpharm.2022.122034] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/06/2022] [Accepted: 07/15/2022] [Indexed: 10/17/2022]
Abstract
Programmed cell death 1 (PD-1) blockade combination to other drugs have attracted the interest of scientists for treating tumors resistant to PD-1 blockade. In this study, the impact of the interval, order of administration, and number of cycles of immunotherapeutic combination of stimulator of interferon genes (STING) pathway agonist loaded lipid nanoparticle (STING-LNP) and PD-1 antibody for inducing the optimal combined antitumor activity against a melanoma lung metastasis is reported. One cycle had no effect, but two and three cycles resulted in a combinedantitumor effect. The interval between the administration was found to influence the induction of the combined effect. The second and third doses increased the gene expression of the NK cell activation marker, interferon γ (IFN-γ), PD-1 and a ligand of PD-1 (PD-L1), whereas the first dose failed. NK cells in the lung showed an increase in the expression of the activation markers and PD-1 after the second dose. The combined antitumor effect of this combination therapy against melanoma lung metastasis model could be dependent on the interval as well as the number of doses of STING-LNP.These findings suggest the importance of the protocol setting when combining a nano system loaded with an immune adjuvant and PD-1 antibody.
Collapse
Affiliation(s)
- Alaa M Khalifa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan.
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Takanori Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Mamoru Hyodo
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho Toyota, Aichi 470-0392, Japan
| | - Yoshihiro Hayakawa
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho Toyota, Aichi 470-0392, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan.
| |
Collapse
|
7
|
Nakamura T, Sato Y, Yamada Y, Abd Elwakil MM, Kimura S, Younis MA, Harashima H. Extrahepatic targeting of lipid nanoparticles in vivo with intracellular targeting for future nanomedicines. Adv Drug Deliv Rev 2022; 188:114417. [PMID: 35787389 DOI: 10.1016/j.addr.2022.114417] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/02/2022] [Accepted: 06/28/2022] [Indexed: 12/15/2022]
Abstract
A new era of nanomedicines that involve nucleic acids/gene therapy has been opened after two decades in 21st century and new types of more efficient drug delivery systems (DDS) are highly expected and will include extrahepatic delivery. In this review, we summarize the possibility and expectations for the extrahepatic delivery of small interfering RNA/messenger RNA/plasmid DNA/genome editing to the spleen, lung, tumor, lymph nodes as well as the liver based on our studies as well as reported information. Passive targeting and active targeting are discussed in in vivo delivery and the importance of controlled intracellular trafficking for successful therapeutic results are also discussed. In addition, mitochondrial delivery as a novel strategy for nucleic acids/gene therapy is introduced to expand the therapeutic dimension of nucleic acids/gene therapy in the liver as well as the heart, kidney and brain.
Collapse
Affiliation(s)
- Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Mahmoud M Abd Elwakil
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Seigo Kimura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Mahmoud A Younis
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
8
|
Yamada Y, Sato Y, Nakamura T, Harashima H. Innovative cancer nanomedicine based on immunology, gene editing, intracellular trafficking control. J Control Release 2022; 348:357-369. [PMID: 35623492 DOI: 10.1016/j.jconrel.2022.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
The recent rapid progress in the area of drug delivery systems (DDS) has opened a new era in medicine with a strong linkage to understanding the molecular mechanisms associated with cancer survival. In this review, we summarize new cancer strategies that have recently been developed based on our DDS technology. Cancer immunotherapy will be improved based on the concept of the cancer immunity cycle, which focuses on dynamic interactions between various types of cancer and immune cells in our body. The new technology of genome editing will also be discussed with reference to how these new DDS technologies can be used to introduce therapeutic cargoes into our body. Lastly, a new organelle, mitochondria will be the focus of creating a new cancer treatment strategy by a MITO-Porter which can deliver macromolecules directly to mitochondria of cancer cells via a membrane fusion approach and the impact of controlled intracellular trafficking will be discussed.
Collapse
Affiliation(s)
- Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Japan Science and Technology Agency (JST) Fusion Oriented REsearch for disruptive Science and Technology (FOREST) Program, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
9
|
Nakamura T, Haloho SEE, Harashima H. Intravenous liposomal vaccine enhances CTL generation, but not until antigen presentation. J Control Release 2022; 343:1-12. [DOI: 10.1016/j.jconrel.2022.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 12/12/2022]
|
10
|
Nakamura T, Kawakami K, Nomura M, Sato Y, Hyodo M, Hatakeyama H, Hayakawa Y, Harashima H. Combined nano cancer immunotherapy based on immune status in a tumor microenvironment. J Control Release 2022; 345:200-213. [DOI: 10.1016/j.jconrel.2022.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 02/08/2023]
|
11
|
Strategies for fighting pandemic virus infections: Integration of virology and drug delivery. J Control Release 2022; 343:361-378. [PMID: 35122872 PMCID: PMC8810279 DOI: 10.1016/j.jconrel.2022.01.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
Respiratory viruses have sometimes resulted in worldwide pandemics, with the influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) being major participants. Long-term efforts have made it possible to control the influenza virus, but seasonal influenza continues to take many lives each year, and a pandemic influenza virus sometimes emerges. Although vaccines for coronavirus disease 2019 (COVID-19) have been developed, we are not yet able to coexist with the SARS-CoV-2. To overcome such viruses, it is necessary to obtain knowledge about international surveillance systems, virology, ecology and to determine that immune responses are effective. The information must then be transferred to drugs. Delivery systems would be expected to contribute to the rational development of drugs. In this review, virologist and drug delivery system (DDS) researchers discuss drug delivery strategies, especially the use of lipid-based nanocarriers, for fighting to respiratory virus infections.
Collapse
|
12
|
Roy SM, Garg V, Barman S, Ghosh C, Maity AR, Ghosh SK. Kinetics of Nanomedicine in Tumor Spheroid as an In Vitro Model System for Efficient Tumor-Targeted Drug Delivery With Insights From Mathematical Models. Front Bioeng Biotechnol 2021; 9:785937. [PMID: 34926430 PMCID: PMC8671936 DOI: 10.3389/fbioe.2021.785937] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/27/2021] [Indexed: 12/25/2022] Open
Abstract
Numerous strategies have been developed to treat cancer conventionally. Most importantly, chemotherapy shows its huge promise as a better treatment modality over others. Nonetheless, the very complex behavior of the tumor microenvironment frequently impedes successful drug delivery to the tumor sites that further demands very urgent and effective distribution mechanisms of anticancer drugs specifically to the tumor sites. Hence, targeted drug delivery to tumor sites has become a major challenge to the scientific community for cancer therapy by assuring drug effects to selective tumor tissue and overcoming undesired toxic side effects to the normal tissues. The application of nanotechnology to the drug delivery system pays heed to the design of nanomedicine for specific cell distribution. Aiming to limit the use of traditional strategies, the adequacy of drug-loaded nanocarriers (i.e., nanomedicine) proves worthwhile. After systemic blood circulation, a typical nanomedicine follows three levels of disposition to tumor cells in order to exhibit efficient pharmacological effects induced by the drug candidates residing within it. As a result, nanomedicine propounds the assurance towards the improved bioavailability of anticancer drug candidates, increased dose responses, and enhanced targeted efficiency towards delivery and distribution of effective therapeutic concentration, limiting toxic concentration. These aspects emanate the proficiency of drug delivery mechanisms. Understanding the potential tumor targeting barriers and limiting conditions for nanomedicine extravasation, tumor penetration, and final accumulation of the anticancer drug to tumor mass, experiments with in vivo animal models for nanomedicine screening are a key step before it reaches clinical translation. Although the study with animals is undoubtedly valuable, it has many associated ethical issues. Moreover, individual experiments are very expensive and take a longer time to conclude. To overcome these issues, nowadays, multicellular tumor spheroids are considered a promising in vitro model system that proposes better replication of in vivo tumor properties for the future development of new therapeutics. In this review, we will discuss how tumor spheroids could be used as an in vitro model system to screen nanomedicine used in targeted drug delivery, aiming for better therapeutic benefits. In addition, the recent proliferation of mathematical modeling approaches gives profound insight into the underlying physical principles and produces quantitative predictions. The hierarchical tumor structure is already well decorous to be treated mathematically. To study targeted drug delivery, mathematical modeling of tumor architecture, its growth, and the concentration gradient of oxygen are the points of prime focus. Not only are the quantitative models circumscribed to the spheroid, but also the role of modeling for the nanoparticle is equally inevitable. Abundant mathematical models have been set in motion for more elaborative and meticulous designing of nanomedicine, addressing the question regarding the objective of nanoparticle delivery to increase the concentration and the augmentative exposure of the therapeutic drug molecule to the core. Thus, to diffuse the dichotomy among the chemistry involved, biological data, and the underlying physics, the mathematical models play an indispensable role in assisting the experimentalist with further evaluation by providing the admissible quantitative approach that can be validated. This review will provide an overview of the targeted drug delivery mechanism for spheroid, using nanomedicine as an advantageous tool.
Collapse
Affiliation(s)
| | - Vrinda Garg
- Department of Physics, National Institute of Technology, Warangal, India
| | - Sourav Barman
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Chitrita Ghosh
- Department of Pharmacology, Burdwan Medical College and Hospital, Burdwan, India
| | | | - Surya K. Ghosh
- Department of Physics, National Institute of Technology, Warangal, India
| |
Collapse
|
13
|
García-Fernández C, Saz A, Fornaguera C, Borrós S. Cancer immunotherapies revisited: state of the art of conventional treatments and next-generation nanomedicines. Cancer Gene Ther 2021; 28:935-946. [PMID: 33837365 DOI: 10.1038/s41417-021-00333-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/24/2021] [Accepted: 03/24/2021] [Indexed: 02/02/2023]
Abstract
Nowadays, the landscape of cancer treatments has broadened thanks to the clinical application of immunotherapeutics. After decades of failures, cancer immunotherapy represents an exciting alternative for those patients suffering from a wide variety of cancers, especially for those skin cancers, such as the early stages of melanoma. However, those cancers affecting internal organs still face a long way to success, because of the poor biodistribution of immunotherapies. Here, nanomedicine appears as a hopeful strategy to modulate the biodistribution aiming at target organ accumulation. In this way, efficacy will be improved, while reducing the side effects at the same time. In this review, we aim to highlight the most promising cancer immunotherapeutic strategies. From monoclonal antibodies and their traditional use as targeted therapies to their current use as immune checkpoint inhibitors; as well as adoptive cell transfer therapies; oncolytic viruses, and therapeutic cancer vaccination. Then, we aim to discuss the important role of nanomedicine to improve the performance of these immunotherapeutic tools to finally review the already marketed nanomedicine-based cancer immunotherapies.
Collapse
Affiliation(s)
- Coral García-Fernández
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona, Spain
| | - Anna Saz
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona, Spain
| | - Cristina Fornaguera
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona, Spain.
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Univeritat Ramon Llull (URL), Barcelona, Spain
| |
Collapse
|
14
|
Wang H, Wang L, Li Y, Li G, Zhang X, Jiang D, Zhang Y, Liu L, Chu Y, Xu G. Nanobody-armed T cells endow CAR-T cells with cytotoxicity against lymphoma cells. Cancer Cell Int 2021; 21:450. [PMID: 34429118 PMCID: PMC8386010 DOI: 10.1186/s12935-021-02151-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/13/2021] [Indexed: 02/02/2023] Open
Abstract
Background Taking advantage of nanobodies (Nbs) in immunotherapy, we investigated the cytotoxicity of Nb-based chimeric antigen receptor T cells (Nb CAR-T) against lymphoma cells. Methods CD19 Nb CAR-T, CD20 Nb CAR-T, and Bispecific Nb CAR-T cells were generated by panning anti-human CD19- and CD20-specific nanobody sequences from a natural Nb-expressing phage display library, integrating Nb genes with a lentiviral cassette that included other CAR elements, and finally transducing T cells that were expanded under an optimization system with the above generated CAR lentivirus. Prepared Nb CAR-T cells were cocultured with tumour cell lines or primary tumour cells for 24 h or 5 days to evaluate their biological function. Results The nanobodies that we selected from the natural Nb-expressing phage display library had a high affinity and specificity for CD19 and CD20. CD19 Nb CAR-T, CD20 Nb CAR-T and Bispecific Nb CAR-T cells were successfully constructed, and these Nb CAR-T cells could strongly recognize Burkitt lymphoma cell lines (Raji and Daudi), thereby leading to activation, enhanced proliferation, and specific killing of target cells. Furthermore, similar results were obtained when using patient samples as target cells, with a cytotoxicity of approximately 60%. Conclusions Nanobody-based CAR-T cells can kill both tumour cell lines and patient-derived tumour cells in vitro, and Nb-based CAR-T cells may be a promising therapeutic strategy in future immunotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02151-z.
Collapse
Affiliation(s)
- Hongxia Wang
- General Hospital of Ningxia Medical University, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Institute of Clinical Laboratory, Guangdong Medical University, Dongguan, China
| | - Liyan Wang
- General Hospital of Ningxia Medical University, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Yanning Li
- General Hospital of Ningxia Medical University, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Guangqi Li
- General Hospital of Ningxia Medical University, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Xiaochun Zhang
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Dan Jiang
- General Hospital of Ningxia Medical University, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Yanting Zhang
- General Hospital of Ningxia Medical University, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Liyuan Liu
- General Hospital of Ningxia Medical University, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Yuankui Chu
- General Hospital of Ningxia Medical University, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Guangxian Xu
- General Hospital of Ningxia Medical University, School of Clinical Medicine, Ningxia Medical University, Yinchuan, China. .,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Institute of Clinical Laboratory, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
15
|
Sun S, Ding Z, Yang X, Zhao X, Zhao M, Gao L, Chen Q, Xie S, Liu A, Yin S, Xu Z, Lu X. Nanobody: A Small Antibody with Big Implications for Tumor Therapeutic Strategy. Int J Nanomedicine 2021; 16:2337-2356. [PMID: 33790553 PMCID: PMC7997558 DOI: 10.2147/ijn.s297631] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/16/2021] [Indexed: 12/15/2022] Open
Abstract
The development of monoclonal antibody treatments for successful tumor-targeted therapies took several decades. However, the efficacy of antibody-based therapy is still confined and desperately needs further improvement. Nanobodies are the recombinant variable domains of heavy-chain-only antibodies, with many unique properties such as small size (~15kDa), excellent solubility, superior stability, ease of manufacture, quick clearance from blood, and deep tissue penetration, which gain increasing acceptance as therapeutical tools and are considered also as building blocks for chimeric antigen receptors as well as for targeted drug delivery. Thus, one of the promising novel developments that may address the deficiency of monoclonal antibody-based therapies is the utilization of nanobodies. This article provides readers the significant factors that the structural and biochemical properties of nanobodies and the research progress on nanobodies in the fields of tumor treatment, as well as their application prospect.
Collapse
Affiliation(s)
- Shuyang Sun
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Ziqiang Ding
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Xiaomei Yang
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Xinyue Zhao
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Minlong Zhao
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Li Gao
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Qu Chen
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Shenxia Xie
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Aiqun Liu
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Shihua Yin
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Zhiping Xu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xiaoling Lu
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| |
Collapse
|
16
|
Delle Cave D, Rizzo R, Sainz B, Gigli G, del Mercato LL, Lonardo E. The Revolutionary Roads to Study Cell-Cell Interactions in 3D In Vitro Pancreatic Cancer Models. Cancers (Basel) 2021; 13:930. [PMID: 33672435 PMCID: PMC7926501 DOI: 10.3390/cancers13040930] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/07/2021] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer, the fourth most common cancer worldwide, shows a highly unsuccessful therapeutic response. In the last 10 years, neither important advancements nor new therapeutic strategies have significantly impacted patient survival, highlighting the need to pursue new avenues for drug development discovery and design. Advanced cellular models, resembling as much as possible the original in vivo tumor environment, may be more successful in predicting the efficacy of future anti-cancer candidates in clinical trials. In this review, we discuss novel bioengineered platforms for anticancer drug discovery in pancreatic cancer, from traditional two-dimensional models to innovative three-dimensional ones.
Collapse
Affiliation(s)
- Donatella Delle Cave
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (CNR-IGB), Via Pietro Castellino 111, 80131 Naples, Italy;
| | - Riccardo Rizzo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy; (R.R.); (G.G.); (L.L.d.M.)
| | - Bruno Sainz
- Department of Cancer Biology, Instituto de Investigaciones Biomedicas “Alberto Sols” (IIBM), CSIC-UAM, 28029 Madrid, Spain;
- Spain and Chronic Diseases and Cancer, Area 3-Instituto Ramon y Cajal de Investigacion Sanitaria (IRYCIS), 28029 Madrid, Spain
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy; (R.R.); (G.G.); (L.L.d.M.)
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, via Arnesano, 73100 Lecce, Italy
| | - Loretta L. del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy; (R.R.); (G.G.); (L.L.d.M.)
| | - Enza Lonardo
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (CNR-IGB), Via Pietro Castellino 111, 80131 Naples, Italy;
| |
Collapse
|
17
|
Sato Y, Nakamura T, Yamada Y, Harashima H. The nanomedicine rush: New strategies for unmet medical needs based on innovative nano DDS. J Control Release 2021; 330:305-316. [DOI: 10.1016/j.jconrel.2020.12.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
|
18
|
Amaral M, Pereiro AB, Gaspar MM, Reis CP. Recent advances in ionic liquids and nanotechnology for drug delivery. Nanomedicine (Lond) 2020; 16:63-80. [PMID: 33356551 DOI: 10.2217/nnm-2020-0340] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In drug discovery and drug development, it is estimated that around 40% of commercialized and 90% of under-study drugs have inadequate pharmaceutical properties, severely impairing its therapeutic efficacy. Thus, there is a strong demand to find strategies to enhance the delivery of such drugs. Ionic liquids are a novel class of liquids composed of a combination of organic salts that are of particular interest alone or in combination with drug delivery systems. This review is focused on the recent efforts using ionic liquids in drug solubility, formulation and drug delivery with specific emphasis on nanotechnology. The latest developments using hybrid delivery systems obtained upon the combination of drug delivery systems and ionic liquids will also be addressed.
Collapse
Affiliation(s)
- Mariana Amaral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, 1649-003, Portugal
| | - Ana B Pereiro
- LAQV, REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, 1649-003, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, 1649-003, Portugal.,IBEB, Institute of Biophysics & Biomedical Engineering, Faculdade de Ciências, Universidade de Lisboa, Lisboa, 1749-016, Portugal
| |
Collapse
|
19
|
Nakamura T, Harashima H. Dawn of lipid nanoparticles in lymph node targeting: Potential in cancer immunotherapy. Adv Drug Deliv Rev 2020; 167:78-88. [PMID: 32512027 DOI: 10.1016/j.addr.2020.06.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022]
Abstract
It is generally known that the lymph nodes (LNs) are important tissues in cancer immunotherapy. Therefore, delivering immune functional compounds to LNs is a useful strategy for enhancing cancer immunotherapy. Lipid-based nanocarriers have been widely used as delivery systems that target LNs, but lipid nanoparticle (LNP) technology has recently attracted increased interest. High levels of nucleic acids can be efficiently loaded in LNPs, they can be used to actively deliver nucleic acids into the cytoplasm, and they can be produced on an industrial scale. The use of microfluidic devices has been particularly valuable for producing small-sized LNPs, thus paving the way for successful LN targeting. In the review, we focus on the potential of LNP technology for targeting LNs.
Collapse
|
20
|
Yamada Y, Sato Y, Nakamura T, Harashima H. Evolution of drug delivery system from viewpoint of controlled intracellular trafficking and selective tissue targeting toward future nanomedicine. J Control Release 2020; 327:533-545. [PMID: 32916227 PMCID: PMC7477636 DOI: 10.1016/j.jconrel.2020.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Due to the rapid changes that have occurred in the field of drug discovery and the recent developments in the early 21st century, the role of drug delivery systems (DDS) has become increasingly more important. For the past 20 years, our laboratory has been developing gene delivery systems based on lipid-based delivery systems. One of our efforts has been directed toward developing a multifunctional envelope-type nano device (MEND) by modifying the particle surface with octaarginine, which resulted in a remarkably enhanced cellular uptake and improved intracellular trafficking of plasmid DNA (pDNA). When we moved to in vivo applications, however, we were faced with the PEG-dilemma and we shifted our strategy to the incorporation of ionizable cationic lipids into our system. This resulted in some dramatic improvements over our original design and this can be attributed to the development of a new lipid library. We have also developed a mitochondrial targeting system based on a membrane fusion mechanism using a MITO-Porter, which can deliver nucleic acids/pDNA into the matrix of mitochondria. After the appearance of antibody medicines, Opdivo, an immune checkpoint inhibitor, has established cancer immunology as the 4th strategy in cancer therapy. Our DDS technologies can also be applied to this new field of cancer therapy to cure cancer by controlling our immune mechanisms. The latest studies are summarized in this review article.
Collapse
Affiliation(s)
- Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
21
|
Fang Z, Tang Y, Ying J, Tang C, Wang Q. Traditional Chinese medicine for anti-Alzheimer's disease: berberine and evodiamine from Evodia rutaecarpa. Chin Med 2020; 15:82. [PMID: 32774447 PMCID: PMC7409421 DOI: 10.1186/s13020-020-00359-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common diseases in elderly people with a high incidence of dementia at approximately 60-80%. The pathogenesis of AD was quite complicated and currently there is no unified conclusion in the academic community, so no efficiently clinical treatment is available. In recent years, with the development of traditional Chinese medicine (TCM), researchers have proposed the idea of relying on TCM to prevent and treat AD based on the characteristic of multiple targets of TCM. This study reviewed the pathological hypothesis of AD and the potential biomarkers found in the current researches. And the potential targets of berberine and evodiamine from Evodia rutaecarpa in AD were summarized and further analyzed. A compound-targets-pathway network was carried out to clarify the mechanism of action of berberine and evodiamine for AD. Furthermore, the limitations of current researches on the TCM and AD were discussed. It is hoped that this review will provide some references for development of TCM in the prevention and treatment of AD.
Collapse
Affiliation(s)
- Zhiling Fang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, 315211 Zhejiang China
| | - Yuqing Tang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, 315211 Zhejiang China
| | - Jiaming Ying
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, 315211 Zhejiang China
| | - Chunlan Tang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, 315211 Zhejiang China
| | - Qinwen Wang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, 315211 Zhejiang China
| |
Collapse
|
22
|
García-Fernández C, Fornaguera C, Borrós S. Nanomedicine in Non-Small Cell Lung Cancer: From Conventional Treatments to Immunotherapy. Cancers (Basel) 2020; 12:E1609. [PMID: 32570729 PMCID: PMC7352459 DOI: 10.3390/cancers12061609] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) remains the most common cause of cancer-related mortality. The heterogeneous nature of this disease hinders its diagnosis and treatment, requiring continuous advances in research aiming to understand its intricate nature. Consequently, the retrospective analysis of conventional therapies has allowed the introduction of novel tools provided by nanotechnology, leading to considerable improvements in clinical outcomes. Furthermore, the development of novel immunotherapies based on the recently understood interaction of the immune system with the tumor highlights the real possibility of definitively treating NSCLC from its early stages. Novel engineering approaches in nanomedicine will enable to overcome the intrinsic limits of conventional and emerging therapies regarding off-site cytotoxicity, specificity, resistance mechanisms, and administration issues. The convergence point of these therapies with nanotechnology lays the foundation for achieving currently unmet needs.
Collapse
Affiliation(s)
- Coral García-Fernández
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), 08022 Barcelona, Spain
| | - Cristina Fornaguera
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), 08022 Barcelona, Spain
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), 08022 Barcelona, Spain
| |
Collapse
|
23
|
Cai X, Jiang Y, Lin M, Zhang J, Guo H, Yang F, Leung W, Xu C. Ultrasound-Responsive Materials for Drug/Gene Delivery. Front Pharmacol 2020; 10:1650. [PMID: 32082157 PMCID: PMC7005489 DOI: 10.3389/fphar.2019.01650] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022] Open
Abstract
Ultrasound is one of the most commonly used methods in the diagnosis and therapy of diseases due to its safety, deep penetration into tissue, and non-invasive nature. In the drug/gene delivery systems, ultrasound shows many advantages in terms of site-specific delivery and spatial release control of drugs/genes and attracts increasing attention. Microbubbles are the most well-known ultrasound-responsive delivery materials. Recently, nanobubbles, droplets, micelles, and nanoliposomes have been developed as novel carriers in this field. Herein, we review advances of novel ultrasound-responsive materials (nanobubbles, droplets, micelles and nanoliposomes) and discuss the challenges of ultrasound-responsive materials in delivery systems to boost the development of ultrasound-responsive materials as delivery carriers.
Collapse
Affiliation(s)
- Xiaowen Cai
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuan Jiang
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mei Lin
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiyong Zhang
- Department of Pediatrics, Shenzhen Maternity and Child Health Care Hospital, Shenzhen, China
| | - Huanhuan Guo
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fanwen Yang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Wingnang Leung
- Asia-Pacific Institute of Aging Studies, Lingnan University, Tuen Mun, Hong Kong, Hong Kong
| | - Chuanshan Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
24
|
Yang Y, Zhao W, Tan W, Lai Z, Fang D, Jiang L, Zuo C, Yang N, Lai Y. An Efficient Cell-Targeting Drug Delivery System Based on Aptamer-Modified Mesoporous Silica Nanoparticles. NANOSCALE RESEARCH LETTERS 2019; 14:390. [PMID: 31872318 PMCID: PMC6928176 DOI: 10.1186/s11671-019-3208-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 11/12/2019] [Indexed: 05/05/2023]
Abstract
How to deliver chemotherapeutic drugs efficiently and selectively to tumor cells to improve therapeutic efficacy remains a difficult problem. We herein construct an efficient cell-targeting drug delivery system (Sgc8-MSN/Dox) based on aptamer-modified mesoporous silica nanoparticles that relies on the tumor-targeting ability of the aptamer Sgc8 to deliver doxorubicin (Dox) to leukemia cells in a targeted way, thereby improving therapeutic efficacy and reducing toxicity. In this work, Sgc8-MSN/Dox showed sustained Dox release, and they targeted and efficiently killed CCRF-CEM human acute T lymphocyte leukemia cells, suggesting potential as a cancer therapy.
Collapse
Affiliation(s)
- Yang Yang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Weihua Zhao
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Wenwen Tan
- Department of Pharmacy, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Zongqiang Lai
- Department of Pharmacy, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Dong Fang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lei Jiang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chuantian Zuo
- Department of Surgery Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Nuo Yang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Yongrong Lai
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
25
|
Kim CG, Kye YC, Yun CH. The Role of Nanovaccine in Cross-Presentation of Antigen-Presenting Cells for the Activation of CD8 + T Cell Responses. Pharmaceutics 2019; 11:E612. [PMID: 31731667 PMCID: PMC6920862 DOI: 10.3390/pharmaceutics11110612] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 01/30/2023] Open
Abstract
Explosive growth in nanotechnology has merged with vaccine development in the battle against diseases caused by bacterial or viral infections and malignant tumors. Due to physicochemical characteristics including size, viscosity, density and electrostatic properties, nanomaterials have been applied to various vaccination strategies. Nanovaccines, as they are called, have been the subject of many studies, including review papers from a material science point of view, although a mode of action based on a biological and immunological understanding has yet to emerge. In this review, we discuss nanovaccines in terms of CD8+ T cell responses, which are essential for antiviral and anticancer therapies. We focus mainly on the role and mechanism, with particular attention to the functional aspects, of nanovaccines in inducing cross-presentation, an unconventional type of antigen-presentation that activates CD8+ T cells upon administration of exogenous antigens, in dendritic cells followed by activation of antigen-specific CD8+ T cell responses. Two major intracellular mechanisms that nanovaccines harness for cross-presentation are described; one is endosomal swelling and rupture, and the other is membrane fusion. Both processes eventually allow exogenous vaccine antigens to be exported from phagosomes to the cytosol followed by loading on major histocompatibility complex class I, triggering clonal expansion of CD8+ T cells. Advancement of nanotechnology with an enhanced understanding of how nanovaccines work will contribute to the design of more effective and safer nanovaccines.
Collapse
Affiliation(s)
- Cheol Gyun Kim
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (C.G.K.); (Y.-C.K.)
| | - Yoon-Chul Kye
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (C.G.K.); (Y.-C.K.)
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (C.G.K.); (Y.-C.K.)
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do 25354, Korea
| |
Collapse
|
26
|
Nakamura T, Yamada Y, Sato Y, Khalil IA, Harashima H. Innovative nanotechnologies for enhancing nucleic acids/gene therapy: Controlling intracellular trafficking to targeted biodistribution. Biomaterials 2019; 218:119329. [DOI: 10.1016/j.biomaterials.2019.119329] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/13/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022]
|
27
|
Auría-Soro C, Nesma T, Juanes-Velasco P, Landeira-Viñuela A, Fidalgo-Gomez H, Acebes-Fernandez V, Gongora R, Almendral Parra MJ, Manzano-Roman R, Fuentes M. Interactions of Nanoparticles and Biosystems: Microenvironment of Nanoparticles and Biomolecules in Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1365. [PMID: 31554176 PMCID: PMC6835394 DOI: 10.3390/nano9101365] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022]
Abstract
Nanotechnology is a multidisciplinary science covering matters involving the nanoscale level that is being developed for a great variety of applications. Nanomedicine is one of these attractive and challenging uses focused on the employment of nanomaterials in medical applications such as drug delivery. However, handling these nanometric systems require defining specific parameters to establish the possible advantages and disadvantages in specific applications. This review presents the fundamental factors of nanoparticles and its microenvironment that must be considered to make an appropriate design for medical applications, mainly: (i) Interactions between nanoparticles and their biological environment, (ii) the interaction mechanisms, (iii) and the physicochemical properties of nanoparticles. On the other hand, the repercussions of the control, alter and modify these parameters in the biomedical applications. Additionally, we briefly report the implications of nanoparticles in nanomedicine and precision medicine, and provide perspectives in immunotherapy, which is opening novel applications as immune-oncology.
Collapse
Affiliation(s)
- Carlota Auría-Soro
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, University of Salamanca, 37008 Salamanca, Spain.
| | - Tabata Nesma
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Pablo Juanes-Velasco
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Alicia Landeira-Viñuela
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Helena Fidalgo-Gomez
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Vanessa Acebes-Fernandez
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Rafael Gongora
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - María Jesus Almendral Parra
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, University of Salamanca, 37008 Salamanca, Spain.
| | - Raúl Manzano-Roman
- Proteomics Unit. Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
- Proteomics Unit. Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| |
Collapse
|
28
|
Endo R, Nakamura T, Kawakami K, Sato Y, Harashima H. The silencing of indoleamine 2,3-dioxygenase 1 (IDO1) in dendritic cells by siRNA-loaded lipid nanoparticles enhances cell-based cancer immunotherapy. Sci Rep 2019; 9:11335. [PMID: 31383907 PMCID: PMC6683295 DOI: 10.1038/s41598-019-47799-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/24/2019] [Indexed: 12/04/2022] Open
Abstract
Cell-based therapy using dendritic cells (DC) represents a potent cancer immunotherapy. However, activated DC express indoleamine 2,3-dioxygenase 1 (IDO1), a counter-regulatory and tolerogenic molecule, leading to the inhibition of T cell activation and the promotion of T cell differentiation into regulatory T cells. Silencing the IDO1 gene in DC by small interfering RNA (siRNA) represents a potent therapeutic strategy. We report on the successful and efficient introduction of a siRNA targeting IDO1 into mouse DCs by a means of a multifunctional envelope-type nanodevice (MEND) containing a YSK12-C4 (YSK12-MEND). The YSK12-C4 has both fusogenic and cationic properties. The YSK12-MEND induced an effective level of gene silencing of IDO1 at siRNA doses in the range of 1–20 nM, a concentration that commercially available transfection reagents are not able to silence. The YSK12-MEND mediated IDO1 silencing had no effect on the characteristic determinants of DC phenotype such as CD11c, CD80 and MHC class II. The silencing of IDO1 in DC by the YSK12-MEND significantly enhanced the antitumor effect against E.G7-OVA tumor. Moreover, a decrease in the numbers of regulatory T cells in the tumor was observed in mice that were treated with the IDO1-silenced DC. The YSK12-MEND appears to be a potent delivery system for IDO1-silenced DC based cancer immunotherapy.
Collapse
Affiliation(s)
- Rikito Endo
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan.
| | - Kyoko Kawakami
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
29
|
Nakamura T. [Development of a Nano DDS for Cancer Immunotherapy Based on Llipid Nanoparticles]. YAKUGAKU ZASSHI 2019; 138:1443-1449. [PMID: 30504656 DOI: 10.1248/yakushi.18-00162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The appearance of immune checkpoint inhibitors has been a major turning point in cancer therapy. The success of immune checkpoint therapy has revolutionized the field of cancer therapy, and immunotherapy has joined the cancer treatment ranks as a pillar. To induce effective anti-tumor immune responses, it is necessary both to enhance the activity of immune cells and to block immune suppression by tumor cells. Carrier type drug delivery systems based on nanobiotechnology (nano DDS) represent a potentially useful technology for efficiently achieving both: enhancement of the activity of immune cells and blocking immune suppression. It has become clear that nano DDS can improve the practical utility of a wide variety of immune functional molecules and thus regulate drug kinetics and intracellular dynamics to improve drug efficacy and reduce side effects. We have been in the process of developing a nano DDS for the enhancement of cancer immunotherapy. A nano DDS encapsulating an agonist of a simulated interferon gene pathway greatly enhanced the activity of the agent's antitumor immune response. To block immune suppression, we successfully developed a small interfering RNA loaded into a nano DDS which regulates gene expression in immune cells. In this review, we summarize our recent efforts regarding cancer immunotherapy using nano DDS.
Collapse
Affiliation(s)
- Takashi Nakamura
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University
| |
Collapse
|
30
|
DNA-loaded nano-adjuvant formed with a vitamin E-scaffold intracellular environmentally-responsive lipid-like material for cancer immunotherapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2587-2597. [PMID: 30170077 DOI: 10.1016/j.nano.2018.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/26/2018] [Accepted: 08/14/2018] [Indexed: 12/30/2022]
Abstract
Cytoplasmic DNA triggers cellular immunity via activating the stimulator of interferon genes pathway. Since DNA is degradable and membrane impermeable, delivery system would permit cytoplasmic delivery by destabilizing the endosomal membrane for the use as an adjuvant. Herein, we report on the development of a plasmid DNA (pDNA)-encapsulating lipid nanoparticle (LNP). The structural components include an SS-cleavable and pH-activated lipid-like material that mounts vitamin E as a hydrophobic scaffold, and dual sensing motifs that are responsive to the intracellular environment (ssPalmE). The pDNA-encapsulating LNP (ssPalmE-LNP) induced a high interferon-β production in Raw 264.7 cells. The subcutaneous injection of ssPalmE-LNP strongly enhanced antigen-specific cytotoxic T cell activity. The ssPalmE-LNP treatment efficiently induced antitumor effects against E.G7-OVA tumor and B16-F10 melanoma metastasis. Furthermore, when combined with an anti-programmed death 1 antibody, an extensive therapeutic antitumor effect was observed. Therefore, the ssPalmE-LNP is a promising carrier of adjuvants for cancer immunotherapy.
Collapse
|
31
|
Meng H, Nel AE. Use of nano engineered approaches to overcome the stromal barrier in pancreatic cancer. Adv Drug Deliv Rev 2018; 130:50-57. [PMID: 29958925 DOI: 10.1016/j.addr.2018.06.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/17/2018] [Accepted: 06/22/2018] [Indexed: 12/13/2022]
Abstract
While chemotherapy is the only approved non-surgical option for the majority of pancreatic cancer patients, it rarely results in a cure. The failure to respond to chemotherapy is due to the presence of an abundant dysplastic stroma that interferes in drug delivery and as a result of drug resistance. It is appropriate, therefore, to consider the stromal contribution to the resistance to chemotherapy and sidestepping this barrier with nanocarriers that improve survival outcome. In this paper, we provide a short overview of the role of the stroma in chemotherapy resistance, including the use of nanocarriers to negate this barrier. We provide a perspective and guidance towards the implementation of nanotherapeutic approaches to improve therapeutic delivery and efficacy of PDAC management.
Collapse
Affiliation(s)
- Huan Meng
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, United States of America; California NanoSystems Institute, University of California, Los Angeles, United States of America.
| | - Andre E Nel
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, United States of America; California NanoSystems Institute, University of California, Los Angeles, United States of America.
| |
Collapse
|
32
|
Golombek SK, May JN, Theek B, Appold L, Drude N, Kiessling F, Lammers T. Tumor targeting via EPR: Strategies to enhance patient responses. Adv Drug Deliv Rev 2018; 130:17-38. [PMID: 30009886 PMCID: PMC6130746 DOI: 10.1016/j.addr.2018.07.007] [Citation(s) in RCA: 812] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022]
Abstract
The tumor accumulation of nanomedicines relies on the enhanced permeability and retention (EPR) effect. In the last 5-10 years, it has been increasingly recognized that there is a large inter- and intra-individual heterogeneity in EPR-mediated tumor targeting, explaining the heterogeneous outcomes of clinical trials in which nanomedicine formulations have been evaluated. To address this heterogeneity, as in other areas of oncology drug development, we have to move away from a one-size-fits-all tumor targeting approach, towards methods that can be employed to individualize and improve nanomedicine treatments. To this end, efforts have to be invested in better understanding the nature, the complexity and the heterogeneity of the EPR effect, and in establishing systems and strategies to enhance, combine, bypass and image EPR-based tumor targeting. In the present manuscript, we summarize key studies in which these strategies are explored, and we discuss how these approaches can be employed to enhance patient responses.
Collapse
Affiliation(s)
- Susanne K Golombek
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Jan-Niklas May
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Benjamin Theek
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Lia Appold
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Natascha Drude
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany; Department of Nuclear Medicine, RWTH Aachen University Clinic, Aachen, Germany
| | - Fabian Kiessling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany; Department of Pharmaceutics, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| |
Collapse
|
33
|
Du W, Hu X, Wei W, Liang G. Intracellular Peptide Self-Assembly: A Biomimetic Approach for in Situ Nanodrug Preparation. Bioconjug Chem 2018; 29:826-837. [PMID: 29316785 DOI: 10.1021/acs.bioconjchem.7b00798] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Most nanodrugs are preprepared by encapsulating or loading the drugs with nanocarriers (e.g., dendrimers, liposomes, micelles, and polymeric nanoparticles). However, besides the low bioavailability and fast excretion of the nanodrugs in vivo, nanocarriers often exhibit in vitro and in vivo cytotoxicity, oxidative stress, and inflammation. Self-assembly is a ubiquitous process in biology where it plays important roles and underlies the formation of a wide variety of complex biological structures. Inspired by some cellular nanostructures (e.g., actin filaments, microtubules, vesicles, and micelles) in biological systems which are formed via molecular self-assembly, in recent decades, scientists have utilized self-assembly of oligomeric peptide under specific physiological or pathological environments to in situ construct nanodrugs for lesion-targeted therapies. On one hand, peptide-based nanodrugs always have some excellent intrinsic chemical (specificity, intrinsic bioactivity, biodegradability) and physical (small size, conformation) properties. On the other hand, stimuli-regulated intracellular self-assembly of nanodrugs is quite an efficient way to accumulate the drugs in lesion location and can realize an in situ slow release of the drugs. In this review article, we provided an overview on recent design principles for intracellular peptide self-assembly and illustrate how these principles have been applied for the in situ preparation of nanodrugs at the lesion location. In the last part, we list some challenges underlying this strategy and their possible solutions. Moreover, we envision the future possible theranostic applications of this strategy.
Collapse
Affiliation(s)
- Wei Du
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , China
| | - Xiaomu Hu
- Department of Medicinal Chemistry, School of Pharmacy , The Fourth Military Medical University , Changle West Road 169 , Xi'an , Shanxi 710032 , China
| | - Weichen Wei
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , China
| | - Gaolin Liang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , China
| |
Collapse
|