1
|
Fan X, Cheng D, Niu B, Wang X, Zhang P. Current research status, applications and challenges of ketorolac-based sustained-release and controlled-release formulations. Int J Pharm 2025:125162. [PMID: 39793634 DOI: 10.1016/j.ijpharm.2024.125162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/11/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025]
Abstract
Ketorolac, a nonsteroidal anti-inflammatory drug, exhibits moderate antipyretic and anti-inflammatory properties, as well as potent analgesic effects. It is widely used in clinical practice for pain relief in cases of mild and severe pain such as postoperative pain, fractures, sprains, toothaches and cancer pain. Due to its relatively short half-life, patients experiencing pain often need frequent injections or oral medications, leading to poor patient compliance. Thus, it is crucial to create long-acting sustained-release formulations of ketorolac. This paper provides an overview of the research, applications, and challenges associated with ketorolac sustained-release formulations over the past decade, based on a comprehensive review of the literature. The aim is to provide fresh insights for the research and development of long-acting, sustained-release, and controlled-release formulations of ketorolac.
Collapse
Affiliation(s)
- Xiaoling Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China; Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, Shandong, PR China
| | - Dongfang Cheng
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, Shandong, PR China.
| | - Baohua Niu
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, Shandong, PR China
| | - Xiuzhi Wang
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, PR China
| | - Peng Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
2
|
Comoglu T, Ozyilmaz ED. Pharmaceutical excipients in pediatric and geriatric drug formulations: safety, efficacy, and regulatory perspectives. Pharm Dev Technol 2024:1-9. [PMID: 39660788 DOI: 10.1080/10837450.2024.2441181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 12/12/2024]
Abstract
Pharmaceutical excipients are indispensable components of drug formulations, playing critical roles in enhancing stability, improving bioavailability, and ensuring patient compliance. In pediatric and geriatric populations, the selection of these excipients becomes even more crucial due to their unique physiological and pharmacokinetic profiles, as well as age-specific formulation requirements. This review examines the functions, safety considerations, and potential adverse effects of excipients in these vulnerable groups. It addresses the challenges of drug formulation for neonates, infants, and elderly patients, including immature enzyme systems, polypharmacy, and swallowing difficulties. The impact of excipient-excipient and excipient-active pharmaceutical ingredient (API) interactions on drug stability, efficacy, and safety is also highlighted. For instance, the effects of polyethylene glycol (PEG) in patients with impaired renal function and destabilizing interactions between surfactants and protein-based APIs are analyzed. Additionally, current guidelines and safety requirements from regulatory bodies such as the FDA, EMA, and ICH are reviewed. This paper emphasizes the importance of carefully selecting excipients that balance functionality and safety to ensure therapeutic efficacy while minimizing risks for pediatric and geriatric patients. Future directions in excipient development and formulation strategies are also discussed to improve treatment outcomes for these populations.
Collapse
Affiliation(s)
- Tansel Comoglu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara/Türkiye
| | - Emine Dilek Ozyilmaz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Türkiye
| |
Collapse
|
3
|
Estrada-Almeida AG, Castrejón-Godínez ML, Mussali-Galante P, Tovar-Sánchez E, Rodríguez A. Pharmaceutical Pollutants: Ecotoxicological Impacts and the Use of Agro-Industrial Waste for Their Removal from Aquatic Environments. J Xenobiot 2024; 14:1465-1518. [PMID: 39449423 PMCID: PMC11503348 DOI: 10.3390/jox14040082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024] Open
Abstract
Medicines are pharmaceutical substances used to treat, prevent, or relieve symptoms of different diseases in animals and humans. However, their large-scale production and use worldwide cause their release to the environment. Pharmaceutical molecules are currently considered emerging pollutants that enter water bodies due to inadequate management, affecting water quality and generating adverse effects on aquatic organisms. Hence, different alternatives for pharmaceuticals removal from water have been sought; among them, the use of agro-industrial wastes has been proposed, mainly because of its high availability and low cost. This review highlights the adverse ecotoxicological effects related to the presence of different pharmaceuticals on aquatic environments and analyzes 94 investigations, from 2012 to 2024, on the removal of 17 antibiotics, highlighting sulfamethoxazole as the most reported, as well as 6 non-steroidal anti-inflammatory drugs (NSAIDs) such as diclofenac and ibuprofen, and 27 pharmaceutical drugs with different pharmacological activities. The removal of these drugs was evaluated using agro-industrial wastes such as wheat straw, mung bean husk, bagasse, bamboo, olive stones, rice straw, pinewood, rice husk, among others. On average, 60% of the agro-industrial wastes were transformed into biochar to be used as a biosorbents for pharmaceuticals removal. The diversity in experimental conditions among the removal studies makes it difficult to stablish which agro-industrial waste has the greatest removal capacity; therefore, in this review, the drug mass removal rate (DMRR) was calculated, a parameter used with comparative purposes. Almond shell-activated biochar showed the highest removal rate for antibiotics (1940 mg/g·h), while cork powder (CP) (10,420 mg/g·h) showed the highest for NSAIDs. Therefore, scientific evidence demonstrates that agro-industrial waste is a promising alternative for the removal of emerging pollutants such as pharmaceuticals substances.
Collapse
Affiliation(s)
- Ana Gabriela Estrada-Almeida
- Especialidad en Gestión Integral de Residuos, Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| | - María Luisa Castrejón-Godínez
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico
| | - Patricia Mussali-Galante
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| | - Alexis Rodríguez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| |
Collapse
|
4
|
Chaksmithanont P, Bangsitthideth K, Arunprasert K, Patrojanasophon P, Pornpitchanarong C. Statistical-Based Optimization of Modified Mangifera indica Fruit Starch as Substituent for Pharmaceutical Tableting Excipient. Polymers (Basel) 2024; 16:2653. [PMID: 39339116 PMCID: PMC11435786 DOI: 10.3390/polym16182653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
This study aimed to optimize modified starch from Mangifera indica (mango) fruit using acid hydrolysis and pre-gelatinization via computer-assisted techniques as a substituent for pharmaceutical tableting excipients. The hydrolysis and microwave-assisted pre-gelatinization time and temperature were optimized using a three-level factorial design. The modified starches were characterized for flowability, compressibility, and swelling properties. It was found that all parameters fit a quadratic model, which can be used to predict the properties of the modified starch. The optimized hydrolysis reaction was 3.8 h at 56.4 °C, while the pre-gelatinization reaction was 3 min at 150 °C. Structural changes were found, ascertaining that starch modification was successful. The optimized hydrolyzed starch showed superior properties in relative to unmodified M. indica fruit starch and comparable characteristics to conventional excipients. The optimized pre-gelatinized starch presented an excellent enhancement in the flow and compression properties, with %swelling greatly augmented 3.95-fold and 1.24-fold compared to unmodified starch and SSG, respectively. Additionally, the pre-gelatinized starch presented comparable binding effect, while the hydrolyzed powder had reduced binding capacity due to shorter chains. The findings revealed that the use of software-assisted design of experiment facilitated a data-driven approach to optimize the modifications. The optimized modified mango starch demonstrated potential as a multifunctional excipient, capable of functioning as binder, disintegrant, and diluent.
Collapse
Affiliation(s)
- Prin Chaksmithanont
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Ketsana Bangsitthideth
- Health Intervention and Technology Assessment Program (HITAP), Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Kwanputtha Arunprasert
- Health Intervention and Technology Assessment Program (HITAP), Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Prasopchai Patrojanasophon
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Chaiyakarn Pornpitchanarong
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
5
|
Pockle R, Masareddy R, Bambulkar V, Desai R, Kiran S. Exploring magnesium myristate for its dual functionality as a binder and lubricant in the formulation of tablet. Ther Deliv 2024; 15:253-266. [PMID: 38420754 DOI: 10.4155/tde-2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Purpose: To explore 'magnesium myristate' for its dual functionality as a lubricant and binder in the formulation of tablets. Methods: Using (DoE), tablet formulations using magnesium myristate and conventional excipients (magnesium stearate and PVP K30) were developed by wet granulation technique. The prepared granules and formulated tablets were evaluated for pre- and post-compression parameters, respectively. Results: Magnesium myristate exhibited excellent flow properties. The optimized formulations containing magnesium myristate exhibited increased hardness and in vitro drug release in comparison to conventional excipients. f2 similarity index for in vitro drug release showed no significant variations with optimized formulations and with the marketed formulations. Conclusion: Magnesium myristate shows a promising replacement for conventional excipients as both a lubricant and binder in tablet formulation.
Collapse
Affiliation(s)
- Rachana Pockle
- Department of Pharmaceutics, KLE College of Pharmacy, KLE Academy of Higher Education & Research, Nehru Nagar, Belagavi - 590010, Karnataka, India
| | - Rajashree Masareddy
- Department of Pharmaceutics, KLE College of Pharmacy, KLE Academy of Higher Education & Research, Nehru Nagar, Belagavi - 590010, Karnataka, India
| | | | | | - Sai Kiran
- Department of Pharmaceutics, KLE College of Pharmacy, KLE Academy of Higher Education & Research, Nehru Nagar, Belagavi - 590010, Karnataka, India
| |
Collapse
|
6
|
Ivanytsya MO, Subotin VV, Gavrilenko KS, Ryabukhin SV, Volochnyuk DM, Kolotilov SV. Advances and Challenges in Development of Transition Metal Catalysts for Heterogeneous Hydrogenation of Organic Compounds. CHEM REC 2024; 24:e202300300. [PMID: 38063808 DOI: 10.1002/tcr.202300300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/19/2023] [Indexed: 02/10/2024]
Abstract
Actual problems of development of catalysts for hydrogenation of heterocyclic compounds by hydrogen are summarized and discussed. The scope of review covers composites of nanoparticles of platinum group metals and 3d metals for heterogeneous catalytic processes. Such problems include increase of catalyst activity, which is important for reduction of precious metals content; development of new catalytic systems which do not contain metals of platinum group or contain cheaper analogues of Pd; control of factors which make influence on the selectivity of the catalysts; achievement of high reproducibility of the catalyst's performance and quality control of the catalysts. Own results of the authors are also summarized and described. The catalysts were prepared by decomposition of Pd0 and Ni0 complexes, pyrolysis of Ni2+ and Co2+ complexes deposited on aerosil and reduction of Ni2+ in pores of porous support in situ. The developed catalysts were used for hydrogenation of multigram batches of heterocyclic compounds.
Collapse
Affiliation(s)
- Mykyta O Ivanytsya
- L. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prosp. Nauky 31, 03028, Kyiv, Ukraine
- Enamine Ltd., 78 Winston Churchill St., 02094, Kyiv, Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyiv, Ukraine
| | - Vladyslav V Subotin
- L. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prosp. Nauky 31, 03028, Kyiv, Ukraine
- Enamine Ltd., 78 Winston Churchill St., 02094, Kyiv, Ukraine
| | - Konstantin S Gavrilenko
- Enamine Ltd., 78 Winston Churchill St., 02094, Kyiv, Ukraine
- Chemical Department, Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyiv, Ukraine
| | - Serhiy V Ryabukhin
- Enamine Ltd., 78 Winston Churchill St., 02094, Kyiv, Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, 02660, Kyiv, Ukraine
| | - Dmytro M Volochnyuk
- Enamine Ltd., 78 Winston Churchill St., 02094, Kyiv, Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, 02660, Kyiv, Ukraine
| | - Sergey V Kolotilov
- L. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prosp. Nauky 31, 03028, Kyiv, Ukraine
- Enamine Ltd., 78 Winston Churchill St., 02094, Kyiv, Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, 01601, Kyiv, Ukraine
| |
Collapse
|
7
|
Adamkiewicz L, Szeleszczuk Ł. Review of Applications of Cyclodextrins as Taste-Masking Excipients for Pharmaceutical Purposes. Molecules 2023; 28:6964. [PMID: 37836807 PMCID: PMC10574773 DOI: 10.3390/molecules28196964] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
It is widely recognized that many active pharmaceutical ingredients (APIs) have a disagreeable taste that affects patient acceptability, particularly in children. Consequently, developing dosage forms with a masked taste has attracted a lot of interest. The application of cyclodextrins as pharmaceutical excipients is highly appreciated and well established, including their roles as drug delivery systems, solubilizers and absorption promoters, agents that improve drug stability, or even APIs. The first work describing the application of the taste-masking properties of CDs as pharmaceutical excipients was published in 2001. Since then, numerous studies have shown that these cyclic oligosaccharides can be effectively used for such purposes. Therefore, the aim of this review is to provide insight into studies in this area. To achieve this aim, a systematic evaluation was conducted, which resulted in the selection of 67 works representing both successful and unsuccessful works describing the application of CDs as taste-masking excipients. Particular attention has been given to the methods of evaluation of the taste-masking properties and the factors affecting the outcomes, such as the choice of the proper cyclodextrin or guest-host molar ratio. The conclusions of this review reveal that the application of CDs is not straightforward; nevertheless, this solution can be an effective, safe, and inexpensive method of taste masking for pharmaceutical purposes.
Collapse
Affiliation(s)
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-093 Warsaw, Poland;
| |
Collapse
|