1
|
Zheng X, Yang J, Hou Y, Fang Y, Wu K, Song Y, Liu K, Zhu J. Current non-invasive strategies for brain drug delivery: overcoming blood-brain barrier transport. Mol Biol Rep 2023; 51:25. [PMID: 38127178 DOI: 10.1007/s11033-023-08968-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/23/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND The blood-brain barrier (BBB) is a complex and dynamic structure that serves as a gatekeeper, restricting the migrations of most compounds and molecules from blood into the central nervous system (CNS). The BBB plays a crucial role in maintaining CNS physiological function and brain homeostasis. It can protect the CNS from the entrance of toxic and infectious agents, however, it also restricts the drug permeation into brain to play a therapeutic role. The BBB has been the biggest limiting hurdle to medications entering the brain excluding from the brain about 100% of large-molecule and more than 98% of all small-molecule neurotherapeutics. As a result, it is of inability for drug molecule to reach requisite concentrations within the brain. OBJECTIVE With the aim of enhancing drug permeability and efficacy, a variety of strategies have been developed: invasive approaches, such as intraarterial delivery, intrathecal delivery, or administrating directly the drug intraventricularly and intracerebrally; non-invasive approaches that take advantage of innate BBB functions, using prodrugs, focused ultrasound, intranasal administration or nanotechnology. CONCLUSIONS Here we mainly review recent developments and challenges related to non-invasive BBB-crossing techniques, whose benefits include higher efficacy, easier application, less treatment burden, better patient acceptability, and adherence. Additionally, we also analyze the potential of non-invasive methods in the treatment of CNS disorders and render them as a most suitable platform for the management of neurological diseases.
Collapse
Affiliation(s)
- Xiaoxiao Zheng
- Department of Neurology, Neuroscience Center, First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Jingyao Yang
- School of Basic Medical Sciences, Institute of Physiology, Shanxi Medical University, Taiyuan, China
| | - Yiwei Hou
- Department of Neurology, Neuroscience Center, First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Yong Fang
- Department of Neurology, Neuroscience Center, First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Kaiyu Wu
- Department of Neurology, Neuroscience Center, First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Yanna Song
- Department of Neurology, Neuroscience Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Kangding Liu
- Department of Neurology, Neuroscience Center, First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China.
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China.
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital, Solna, Stockholm, Sweden.
| |
Collapse
|
2
|
Tai W, Kwok PCL. Recent advances in drug delivery to the central nervous system by inhalation. Expert Opin Drug Deliv 2022; 19:539-558. [PMID: 35532357 DOI: 10.1080/17425247.2022.2074975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Drugs need to enter the systemic circulation efficiently before they can cross the blood-brain barrier and reach the central nervous system. Although the respiratory tract is not a common route of administration for delivering drugs to the central nervous system, it has attracted increasing interest in recent years for this purpose. AREAS COVERED In this article, we compare pulmonary delivery to three other common routes (parenteral, oral, and intranasal) for delivering drugs to the central nervous system, followed by summarising the devices used to aerosolise neurological drugs. Recent studies delivering drugs for different neurological disorders via inhalation are then discussed to illustrate the strengths of pulmonary delivery. EXPERT OPINION Recent studies provide strong evidence and rationale to support inhaling neurological drugs. Since inhalation can achieve improved pharmacokinetics and rapid onset of action for multiple drugs, it is a non-invasive and efficient method to deliver drugs to the central nervous system. Future research should focus on delivering other small and macro-molecules via the lungs for different neurological conditions.
Collapse
Affiliation(s)
- Waiting Tai
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, New South Wales 2006, Australia
| | - Philip Chi Lip Kwok
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
3
|
In Vitro Evaluation of Nasal Aerosol Depositions: An Insight for Direct Nose to Brain Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13071079. [PMID: 34371770 PMCID: PMC8309016 DOI: 10.3390/pharmaceutics13071079] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022] Open
Abstract
The nasal cavity is an attractive route for both local and systemic drug delivery and holds great potential for access to the brain via the olfactory region, an area where the blood–brain barrier (BBB) is effectively absent. However, the olfactory region is located at the roof of the nasal cavity and only represents ~5–7% of the epithelial surface area, presenting significant challenges for the deposition of drug molecules for nose to brain drug delivery (NTBDD). Aerosolized particles have the potential to be directed to the olfactory region, but their specific deposition within this area is confounded by a complex combination of factors, which include the properties of the formulation, the delivery device and how it is used, and differences in inter-patient physiology. In this review, an in-depth examination of these different factors is provided in relation to both in vitro and in vivo studies and how advances in the fabrication of nasal cast models and analysis of aerosol deposition can be utilized to predict in vivo outcomes more accurately. The challenges faced in assessing the nasal deposition of aerosolized particles within the paediatric population are specifically considered, representing an unmet need for nasal and NTBDD to treat CNS disorders.
Collapse
|
4
|
Transport and fate of inhaled particles after deposition onto the airway surface liquid: A 3D numerical study. Comput Biol Med 2020; 117:103595. [DOI: 10.1016/j.compbiomed.2019.103595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/14/2019] [Accepted: 12/27/2019] [Indexed: 11/23/2022]
|
5
|
Vandenbussche N, Goadsby PJ. The discovery and development of inhaled therapeutics for migraine. Expert Opin Drug Discov 2019; 14:591-599. [PMID: 30924698 DOI: 10.1080/17460441.2019.1598373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Migraine is a disabling primary headache disorder that requires effective treatments. Inhalation is currently being explored for the delivery of drugs for migraine. Pulmonary-route delivery of drugs shows potential advantages for its use as a treatment, particularly compared the oral route. Areas covered: The authors highlight the current state of the literature and review multiple therapies for migraine-utilizing inhalation as the route of administration. The following therapeutics are discussed: inhaled ergotamine, inhaled dihydroergotamine mesylate (MAP0004), inhaled prochlorperazine, and inhaled loxapine. Coverage is also given to normobaric oxygen, hyperbaric oxygen, and nitrous oxide therapies. Expert opinion: Inhalation of MAP0004 showed promising results in terms of efficacy for acute migraine treatment in phase 3 studies, together with a more favorable tolerability profile compared to parenteral dosing and a better pharmacokinetic profile versus oral or intranasal delivery. In phase 2 trials, inhaled prochlorperazine shows good pharmacokinetics and efficacy, in contrast to inhaled loxapine that did not provide encouraging results in terms of efficacy. The authors see the potential for the use of dihydroergotamine mesylate in clinical practice pending regulatory approval.
Collapse
Affiliation(s)
- Nicolas Vandenbussche
- a Headache Group, Department of Basic and Clinical Neuroscience , King's College London , London , UK.,b Department of Neurology , Ghent University Hospital , Ghent , Belgium
| | - Peter J Goadsby
- a Headache Group, Department of Basic and Clinical Neuroscience , King's College London , London , UK.,c NIHR Wellcome Trust King's Clinical Research Facility, SLaM Biomedical research Centre , King's College London , UK
| |
Collapse
|
6
|
Chua AL, Silberstein S. Inhaled drug therapy development for the treatment of migraine. Expert Opin Pharmacother 2016; 17:1733-43. [DOI: 10.1080/14656566.2016.1203901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Abigail L. Chua
- Jefferson Headache Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Stephen Silberstein
- Jefferson Headache Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
7
|
|
8
|
Mechanisms of absorption and elimination of drugs administered by inhalation. Ther Deliv 2013; 4:1027-45. [PMID: 23919477 DOI: 10.4155/tde.13.67] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pulmonary drug delivery is an effective route for local or systemic drug administration. However, compared with other routes of administration, there is a scarcity of information on how drugs are absorbed from the lung. The different cell composition lining the airways and alveoli makes this task extremely complicated. Lung cell lines and primary culture cells are useful in studying the absorption mechanisms. However, it is imperative that these cell cultures express essential features required to study these mechanisms such as intact tight junctions and transporters. In vivo, the drug has to face defensive physical and immunological barriers such as mucociliary clearance and alveolar macrophages. Knowledge of the physicochemical properties of the drug and aerosol formulation is required. All of these factors interact together leading to either successful drug deposition followed by absorption or drug elimination. These aspects concerning drug transport in the lung are addressed in this review.
Collapse
|
9
|
Sakamoto A, Matsumaru T, Yamamura N, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T. Quantitative expression of human drug transporter proteins in lung tissues: Analysis of regional, gender, and interindividual differences by liquid chromatography–tandem mass spectrometry. J Pharm Sci 2013; 102:3395-406. [DOI: 10.1002/jps.23606] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 12/30/2022]
|
10
|
Ruge CA, Kirch J, Lehr CM. Pulmonary drug delivery: from generating aerosols to overcoming biological barriers-therapeutic possibilities and technological challenges. THE LANCET RESPIRATORY MEDICINE 2013; 1:402-13. [PMID: 24429205 DOI: 10.1016/s2213-2600(13)70072-9] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Research in pulmonary drug delivery has focused mainly on new particle or device technologies to improve the aerosol generation and pulmonary deposition of inhaled drugs. Although substantial progress has been made in this respect, no significant advances have been made that would lead pulmonary drug delivery beyond the treatment of some respiratory diseases. One main reason for this stagnation is the still very scarce knowledge about the fate of inhaled drug or carrier particles after deposition in the lungs. Improvement of the aerosol component alone is no longer sufficient for therapeutic success of inhalation drugs; a paradigm shift is needed, with an increased focus on the pulmonary barriers to drug delivery. In this Review, we discuss some pathophysiological disorders that could benefit from better control of the processes after aerosol deposition, and pharmaceutical approaches to achieve improved absorption across the alveolar epithelium, prolonged pulmonary clearance, and targeted delivery to specific cells or tissues.
Collapse
Affiliation(s)
- Christian A Ruge
- Department of Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany; Institut Galien Paris-Sud, CNRS UMR 8612, LabEx, LERMIT, University Paris-Sud, Paris, France
| | - Julian Kirch
- Department of Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Department of Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbrücken, Germany.
| |
Collapse
|
11
|
Consistency of dosing with a thermal aerosol generation system: in vitro and in vivo correlation. Future Med Chem 2011; 3:1719-33. [DOI: 10.4155/fmc.11.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dosing consistency and reproducibility are presented for a novel pharmaceutical inhaler technology based on a thermal condensation process. Two different device platforms producing thermally generated aerosols have been created and used in clinical studies with a number of different drug compounds. Because this approach does not rely on energy from the user to disperse the aerosol particles, aerosol production is reliable, reproducible and virtually user independent following actuation. Pharmacokinetic data from multiple clinical studies show rapid absorption, dose proportionality, and concentration levels and variability similar to intravenous injection. In addition, products used in clinical trials show excellent subject consistency with the vast majority of devices delivering greater than 90% of the loaded dose and little drug exhaled.
Collapse
|