1
|
Suffian IFBM, Al-Jamal KT. Bioengineering of virus-like particles as dynamic nanocarriers for in vivo delivery and targeting to solid tumours. Adv Drug Deliv Rev 2022; 180:114030. [PMID: 34736988 DOI: 10.1016/j.addr.2021.114030] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/16/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022]
Abstract
Virus-like particles (VLPs) are known as self-assembled, non-replicative and non-infectious protein particles, which imitate the formation and structure of original wild type viruses, however, lack the viral genome and/or their fragments. The capacity of VLPs to encompass small molecules like nucleic acids and others has made them as novel vessels of nanocarriers for drug delivery applications. In addition, VLPs surface have the capacity to achieve variation of the surface display via several modification strategies including genetic modification, chemical modification, and non-covalent modification. Among the VLPs nanocarriers, Hepatitis B virus core (HBc) particles have been the most encouraging candidate. HBc particles are hollow nanoparticles in the range of 30-34 nm in diameter and 7 nm thick envelopes, consisting of 180 or 240 copies of identical polypeptide monomer. They also employ a distinctive position among the VLPs carriers due to the high-level synthesis, which serves as a strong protective capsid shell and efficient self-assembly properties. This review highlights on the bioengineering of HBc particles as dynamic nanocarriers for in vivo delivery and specific targeting to solid tumours.
Collapse
Affiliation(s)
- Izzat F B M Suffian
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (Kuantan Campus), Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia.
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
2
|
Xu M, Gao H, Ji Q, Chi B, He L, Song Q, Xu Z, Li L, Wang J. Construction multifunctional nanozyme for synergistic catalytic therapy and phototherapy based on controllable performance. J Colloid Interface Sci 2021; 609:364-374. [PMID: 34902673 DOI: 10.1016/j.jcis.2021.11.183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/16/2021] [Accepted: 11/28/2021] [Indexed: 01/19/2023]
Abstract
Advances in nanozyme involve an efficient catalytic process, which has demonstrated great potential in tumor therapy. The key to improving catalytic therapy is to solve the limitation of the tumor microenvironment on Fenton reaction. In this work, Prussian blue nanoparticles doped with different rare earth ions (Yb3+, Gd3+, Tm3+) were screened to perform synergistic of photothermalandcatalytictumortherapy. The optimized catalytic performance can be further enhanced through photothermal effect to maximize the Fenton reaction to solve the limitation of the tumor microenvironment. Yb-PB, with the optimal photothermal and catalytic performance, was screened out. In order to avoid the scavenging effect of glutathione (GSH) on ·OH in tumor cells and the reaction with a bit H2O2 in normal cells, GSH targeted polydopamine (PDA) was wrapped on the surface of Yb-PB to obtain Yb-PB@PDA. It was found that enough hydroxyl radicals (·OH) can be generated even if at high GSH concentration and the NIR irradiation can help produce more ·OH. Cell fluorescence imaging (FOI) and in vivo magnetic resonance imaging (MRI) experiments showed the potential application in FOI/MRI dual-mode imaging guided therapy. In vivo anti-tumor experiments showed that Yb-PB@PDA has a satisfactory anti-cancer effect through the combined effect of catalytic/photothermal therapy. Thus, a multifunctional nanozyme for tumor therapy is constructed.
Collapse
Affiliation(s)
- Mingyue Xu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University 430062, China
| | - Haiqing Gao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University 430062, China
| | - Qin Ji
- Hubei Key Laboratory of Polymer Materials, Hubei University 430062, China
| | - Bin Chi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Le He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University 430062, China
| | - Qian Song
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University 430062, China
| | - Zushun Xu
- Hubei Key Laboratory of Polymer Materials, Hubei University 430062, China
| | - Ling Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University 430062, China.
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
3
|
Kumar S, Fayaz F, Pottoo FH, Bajaj S, Manchanda S, Bansal H. Nanophytomedicine Based Novel Therapeutic Strategies in Liver Cancer. Curr Top Med Chem 2020; 20:1999-2024. [DOI: 10.2174/1568026619666191114113048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Liver cancer is the fifth (6.3% of all cancers i.e., 548,000 cases/year) and ninth (2.8% of all
cancers i.e., 244,000 cases/year) most prevalent cancer worldwide in men and women, respectively. Although
multiple choices of therapies are offered for Hepatocellular Carcinoma (HCC) like liver resection
or transplant, radiofrequency ablation, transarterial chemoembolization, radioembolization, and systemic
targeted agent, by the time of diagnosis, most of the cases of HCC are in an advanced stage, which
renders therapies like liver transplant or resection and local ablation impractical; and targeted therapy
has its shortcomings like general toxicity, imprecise selectivity, several adversative reactions, and resistance
development. Therefore, novel drugs with specificity and selectivity are needed to provide the potential
therapeutic response. Various researches have shown the potential of phytomedicines in liver
cancer by modulating cell growth, invasion, metastasis, and apoptosis. However, their therapeutic potential
is held up by their unfavorable properties like stability, poor water solubility, low absorption, and
quick metabolism. Nonetheless, the advancement of nanotechnology-based innovative nanocarrier formulations
has improved the phytomedicines’ profile to be used in the treatment of liver cancer. Nanocarriers
not only improve the solubility and stability of phytomedicines but also extend their residence in
plasma and accomplish specificity. In this review, we summarize the advancements introduced by
nanotechnology in the treatment of liver cancer. In particular, we discuss quite a few applications of
nanophytomedicines like curcumin, quercetin, epigallocatechin-3-gallate, berberine, apigenin, triptolide,
and resveratrol in liver cancer treatment.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Sector-III, MB Road, PushpVihar, New Delhi-110017, India
| | - Faizana Fayaz
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-III, MB Road, PushpVihar, New Delhi-110017, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Sakshi Bajaj
- Department of Herbal Drug Technology, Delhi Institute of Pharmaceutical Sciences and Research, Sector-III, MB Road, PushpVihar, New Delhi-110017, India
| | - Satish Manchanda
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector-III, MB Road, PushpVihar, New Delhi-110017, India
| | - Himangini Bansal
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-III, MB Road, PushpVihar, New Delhi-110017, India
| |
Collapse
|
4
|
Yazdani H, Kaul E, Bazgir A, Maysinger D, Kakkar A. Telodendrimer-Based Macromolecular Drug Design using 1,3-Dipolar Cycloaddition for Applications in Biology. Molecules 2020; 25:E857. [PMID: 32075239 PMCID: PMC7071137 DOI: 10.3390/molecules25040857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/20/2022] Open
Abstract
An architectural polymer containing hydrophobic isoxazole-based dendron and hydrophilic polyethylene glycol linear tail is prepared by a combination of the robust ZnCl2 catalyzed alkyne-nitrile oxide 1,3-dipolar cycloaddition and esterification chemistry. This water soluble amphiphilic telodendrimer acts as a macromolecular biologically active agent and shows concentration dependent reduction of glioblastoma (U251) cell survival.
Collapse
Affiliation(s)
- Hossein Yazdani
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC H3A 0B8, Canada;
- Department of Chemistry, Shahid Beheshti University G.C., Tehran 1983963113, Iran;
| | - Esha Kaul
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada;
| | - Ayoob Bazgir
- Department of Chemistry, Shahid Beheshti University G.C., Tehran 1983963113, Iran;
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada;
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC H3A 0B8, Canada;
| |
Collapse
|
5
|
Rawal S, Patel MM. Threatening cancer with nanoparticle aided combination oncotherapy. J Control Release 2019; 301:76-109. [PMID: 30890445 DOI: 10.1016/j.jconrel.2019.03.015] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022]
Abstract
Employing combination therapy has become obligatory in cancer cases exhibiting high tumor load, chemoresistant tumor population, and advanced disease stages. Realization of this fact has now led many of the combination oncotherapies to become an integral part of anticancer regimens. Combination oncotherapy may encompass a combination of anticancer agents belonging to a similar therapeutic category or that of different therapeutic categories (e.g. chemotherapy + gene therapy). Differences in the physicochemical properties, pharmacokinetics and biodistribution pattern of different payloads are the major constraints that are faced by combination chemotherapy. Concordant efforts in the field of nanotechnology and oncology have emerged with several approaches to solve the major issues encountered by combination therapy. Unique colloidal behaviors of various types of nanoparticles and differential targeting strategies have accorded an unprecedented ability to optimize combination oncotherapeutic delivery. Nanocarrier based delivery of the various types of payloads such as chemotherapeutic agents and other anticancer therapeutics such as small interfering ribonucleic acid (siRNA), chemosensitizers, radiosensitizers, and antiangiogenic agents have been addressed in the present review. Various nano-delivery systems like liposomes, polymeric nanoparticles, polymerosomes, dendrimers, micelles, lipid based nanoparticles, prodrug based nanocarriers, polymer-drug conjugates, polymer-lipid hybrid nanoparticles, carbon nanotubes, nanosponges, supramolecular nanocarriers and inorganic nanoparticles (gold nanoparticles, silver nanoparticles, magnetic nanoparticles and mesoporous silica based nanoparticles) that have been extensively explored for the formulation of multidrug delivery is an imperative part of discussion in the review. The present review features the outweighing benefits of combination therapy over mono-oncotherapy and discusses several existent nanoformulation strategies that facilitate a successful combination oncotherapy. Several obstacles that may impede in transforming nanotechnology-based combination oncotherapy from bench to bedside, and challenges associated therein have also been discussed in the present review.
Collapse
Affiliation(s)
- Shruti Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India.
| |
Collapse
|
6
|
Xiao K, Liu Q, Al Awwad N, Zhang H, Lai L, Luo Y, Lee JS, Li Y, Lam KS. Reversibly disulfide cross-linked micelles improve the pharmacokinetics and facilitate the targeted, on-demand delivery of doxorubicin in the treatment of B-cell lymphoma. NANOSCALE 2019; 10:8207-8216. [PMID: 29682647 DOI: 10.1039/c8nr00680f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Doxorubicin (DOX) is commonly used to treat human malignancies, and its efficacy can be maximized by limiting the cardiac toxicity when combined with nanoparticles. Here, we reported a unique type of reversibly disulfide cross-linked micellar formulation of DOX (DOX-DCMs) for the targeted therapy of B-cell lymphoma. DOX-DCMs exhibited high drug loading capacity, optimal particle sizes (15-20 nm), outstanding stability in human plasma, and stimuli-responsive drug release profile under reductive conditions. DOX-DCMs significantly improved the pharmacokinetics of DOX, and its elimination half-life (t1/2) and area under curve (AUC) were 5.5 and 12.4 times of that of free DOX, respectively. Biodistribution studies showed that DOX-DCMs were able to preferentially accumulate in the tumor site and significantly reduce the cardiac uptake of DOX. In a xenograft model of human B-cell lymphoma, compared with the equivalent dose of free DOX and non-crosslinked counterpart, DOX-DCMs not only significantly inhibited the tumor growth and prolonged the survival rate, but also remarkably reduced DOX-associated cardiotoxicity. Furthermore, the exogenous administration of N-acetylcysteine (NAC) at 24 h further improved the therapeutic efficacy of DOX-DCMs, which provides a "proof-of-concept" for precise drug delivery on-demand, and may have great translational potential as future cancer nano-therapeutics.
Collapse
Affiliation(s)
- Kai Xiao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
He W, Felderman M, Evans AC, Geng J, Homan D, Bourguet F, Fischer NO, Li Y, Lam KS, Noy A, Xing L, Cheng RH, Rasley A, Blanchette CD, Kamrud K, Wang N, Gouvis H, Peterson TC, Hubby B, Coleman MA. Cell-free production of a functional oligomeric form of a Chlamydia major outer-membrane protein (MOMP) for vaccine development. J Biol Chem 2017; 292:15121-15132. [PMID: 28739800 DOI: 10.1074/jbc.m117.784561] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/13/2017] [Indexed: 11/06/2022] Open
Abstract
Chlamydia is a prevalent sexually transmitted disease that infects more than 100 million people worldwide. Although most individuals infected with Chlamydia trachomatis are initially asymptomatic, symptoms can arise if left undiagnosed. Long-term infection can result in debilitating conditions such as pelvic inflammatory disease, infertility, and blindness. Chlamydia infection, therefore, constitutes a significant public health threat, underscoring the need for a Chlamydia-specific vaccine. Chlamydia strains express a major outer-membrane protein (MOMP) that has been shown to be an effective vaccine antigen. However, approaches to produce a functional recombinant MOMP protein for vaccine development are limited by poor solubility, low yield, and protein misfolding. Here, we used an Escherichia coli-based cell-free system to express a MOMP protein from the mouse-specific species Chlamydia muridarum (MoPn-MOMP or mMOMP). The codon-optimized mMOMP gene was co-translated with Δ49apolipoprotein A1 (Δ49ApoA1), a truncated version of mouse ApoA1 in which the N-terminal 49 amino acids were removed. This co-translation process produced mMOMP supported within a telodendrimer nanolipoprotein particle (mMOMP-tNLP). The cell-free expressed mMOMP-tNLPs contain mMOMP multimers similar to the native MOMP protein. This cell-free process produced on average 1.5 mg of purified, water-soluble mMOMP-tNLP complex in a 1-ml cell-free reaction. The mMOMP-tNLP particle also accommodated the co-localization of CpG oligodeoxynucleotide 1826, a single-stranded synthetic DNA adjuvant, eliciting an enhanced humoral immune response in vaccinated mice. Using our mMOMP-tNLP formulation, we demonstrate a unique approach to solubilizing and administering membrane-bound proteins for future vaccine development. This method can be applied to other previously difficult-to-obtain antigens while maintaining full functionality and immunogenicity.
Collapse
Affiliation(s)
- Wei He
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | | | - Angela C Evans
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Jia Geng
- From the Lawrence Livermore National Laboratory, Livermore, California 94550.,School of Natural Sciences, University of California, Merced, California 95343
| | - David Homan
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Feliza Bourguet
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Nicholas O Fischer
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Yuanpei Li
- the Department of Biochemistry and Molecular Medicine and
| | - Kit S Lam
- the Department of Biochemistry and Molecular Medicine and
| | - Aleksandr Noy
- From the Lawrence Livermore National Laboratory, Livermore, California 94550.,School of Natural Sciences, University of California, Merced, California 95343
| | - Li Xing
- the Department of Molecular and Cellular Biology, University of California, Davis, California 95618
| | - R Holland Cheng
- the Department of Molecular and Cellular Biology, University of California, Davis, California 95618
| | - Amy Rasley
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Craig D Blanchette
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Kurt Kamrud
- Synthetic Genomics Vaccine Inc., La Jolla, California 92037
| | - Nathaniel Wang
- Synthetic Genomics Vaccine Inc., La Jolla, California 92037
| | - Heather Gouvis
- Synthetic Genomics Vaccine Inc., La Jolla, California 92037
| | | | - Bolyn Hubby
- Synthetic Genomics Vaccine Inc., La Jolla, California 92037
| | - Matthew A Coleman
- From the Lawrence Livermore National Laboratory, Livermore, California 94550, .,Radiation Oncology, School of Medicine, University of California Davis, Sacramento, California 95817, and
| |
Collapse
|
8
|
Faustino C, Serafim C, Rijo P, Reis CP. Bile acids and bile acid derivatives: use in drug delivery systems and as therapeutic agents. Expert Opin Drug Deliv 2016; 13:1133-48. [DOI: 10.1080/17425247.2016.1178233] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Célia Faustino
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudia Serafim
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Patrícia Rijo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Universidade Lusófona de Humanidades e Tecnologias, Escola de Ciências e Tecnologias da Saúde, Research Center for Biosciences and Healht Technologies (CBIOS), Lisbon, Portugal
| | - Catarina Pinto Reis
- Universidade Lusófona de Humanidades e Tecnologias, Escola de Ciências e Tecnologias da Saúde, Research Center for Biosciences and Healht Technologies (CBIOS), Lisbon, Portugal
- Biophysics and Biomedical Engineering Institute (IBEB), Faculty of Sciences, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|