1
|
Pourhajrezaei S, Abbas Z, Khalili MA, Madineh H, Jooya H, Babaeizad A, Gross JD, Samadi A. Bioactive polymers: A comprehensive review on bone grafting biomaterials. Int J Biol Macromol 2024; 278:134615. [PMID: 39128743 DOI: 10.1016/j.ijbiomac.2024.134615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
The application of bone grafting materials in bone tissue engineering is paramount for treating severe bone defects. In this comprehensive review, we explore the significance and novelty of utilizing bioactive polymers as grafts for successful bone repair. Unlike metals and ceramics, polymers offer inherent biodegradability and biocompatibility, mimicking the native extracellular matrix of bone. While these polymeric micro-nano materials may face challenges such as mechanical strength, various fabrication techniques are available to overcome these shortcomings. Our study not only investigates diverse biopolymeric materials but also illuminates innovative fabrication methods, highlighting their importance in advancing bone tissue engineering.
Collapse
Affiliation(s)
- Sana Pourhajrezaei
- Department of biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Zahid Abbas
- Department of Chemistry, University of Bologna, Bologna, Italy
| | | | - Hossein Madineh
- Department of Polymer Engineering, University of Tarbiat Modares, Tehran, Iran
| | - Hossein Jooya
- Biochemistry group, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Science, Semnan, Iran
| | - Jeffrey D Gross
- ReCELLebrate Regenerative Medicine Clinic, Henderson, NV, USA
| | - Ali Samadi
- Department of Basic Science, School of Medicine, Bam University of Medical Sciences, Bam, Iran.
| |
Collapse
|
2
|
Binaymotlagh R, Hajareh Haghighi F, Chronopoulou L, Palocci C. Liposome-Hydrogel Composites for Controlled Drug Delivery Applications. Gels 2024; 10:284. [PMID: 38667703 PMCID: PMC11048854 DOI: 10.3390/gels10040284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Various controlled delivery systems (CDSs) have been developed to overcome the shortcomings of traditional drug formulations (tablets, capsules, syrups, ointments, etc.). Among innovative CDSs, hydrogels and liposomes have shown great promise for clinical applications thanks to their cost-effectiveness, well-known chemistry and synthetic feasibility, biodegradability, biocompatibility and responsiveness to external stimuli. To date, several liposomal- and hydrogel-based products have been approved to treat cancer, as well as fungal and viral infections, hence the integration of liposomes into hydrogels has attracted increasing attention because of the benefit from both of them into a single platform, resulting in a multifunctional drug formulation, which is essential to develop efficient CDSs. This short review aims to present an updated report on the advancements of liposome-hydrogel systems for drug delivery purposes.
Collapse
Affiliation(s)
- Roya Binaymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
3
|
Tang Y, Shu X, He G, Zhang Y, Zhao Y, Yuan H, Yu J, Guo J, Chen Q. Vancomycin-loaded hydrogels with thermal-responsive, self-peeling, and sustainable antibacterial properties for wound dressing. J Mater Chem B 2024; 12:752-761. [PMID: 38165891 DOI: 10.1039/d3tb02084c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Wound dressings play an important role in wound healing. However, many wound dressings lack antibacterial properties and are difficult to remove from newly grown tissues, causing secondary wound injuries and repeated medical treatment. This study reports a new type of thermal-responsive hydrogel dressing consisting of vancomycin-loaded gelatin nanospheres (GNs) and poly((N-isopropylacrylamide)-co-N-(methylol acrylamide)) functional components that could impart self-peeling and sustainable antibacterial properties. SEM images showed that the prepared hydrogel possessed a porous microstructure and the homogeneous distribution of GNs in its network. Excellent swelling ratios and thermal-induced self-peeling characteristics were confirmed by qualitative analysis. The GNs not only enhanced the strain at break of the hydrogel, but also acted as drug carriers to slow down the drug release from the hydrogel, achieving sustainable antibacterial properties and balanced biocompatibility. Therefore, this vancomycin-loaded hydrogel with self-peeling characteristics provides an effective way of preventing wound infection and can be used as a novel platform for wide-ranging applications of wound dressings.
Collapse
Affiliation(s)
- Yun Tang
- School of Materials Science & Engineering, Xi'an University of Architecture & Technology, Xi'an, Shaanxi 710055, China
| | - Xinrui Shu
- School of Materials Science & Engineering, Xi'an University of Architecture & Technology, Xi'an, Shaanxi 710055, China
| | - Guandi He
- School of Queen Mary University of London Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuhan Zhang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| | - Yonghe Zhao
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| | - Hudie Yuan
- School of Materials Science & Engineering, Xi'an University of Architecture & Technology, Xi'an, Shaanxi 710055, China
| | - Jingjie Yu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| | - Jiabao Guo
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| | - Qiang Chen
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
4
|
Dayanandan AP, Cho WJ, Kang H, Bello AB, Kim BJ, Arai Y, Lee SH. Emerging nano-scale delivery systems for the treatment of osteoporosis. Biomater Res 2023; 27:68. [PMID: 37443121 DOI: 10.1186/s40824-023-00413-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023] Open
Abstract
Osteoporosis is a pathological condition characterized by an accelerated bone resorption rate, resulting in decreased bone density and increased susceptibility to fractures, particularly among the elderly population. While conventional treatments for osteoporosis have shown efficacy, they are associated with certain limitations, including limited drug bioavailability, non-specific administration, and the occurrence of adverse effects. In recent years, nanoparticle-based drug delivery systems have emerged as a promising approach for managing osteoporosis. Nanoparticles possess unique physicochemical properties, such as a small size, large surface area-to-volume ratio, and tunable surface characteristics, which enable them to overcome the limitations of conventional therapies. These nanoparticles offer several advantages, including enhanced drug stability, controlled release kinetics, targeted bone tissue delivery, and improved drug bioavailability. This comprehensive review aims to provide insights into the recent advancements in nanoparticle-based therapy for osteoporosis. It elucidates the various types of nanoparticles employed in this context, including silica, polymeric, solid lipid, and metallic nanoparticles, along with their specific processing techniques and inherent properties that render them suitable as potential drug carriers for osteoporosis treatment. Furthermore, this review discusses the challenges and future suggestions associated with the development and translation of nanoparticle drug delivery systems for clinical use. These challenges encompass issues such as scalability, safety assessment, and regulatory considerations. However, despite these challenges, the utilization of nanoparticle-based drug delivery systems holds immense promise in revolutionizing the field of osteoporosis management by enabling more effective and targeted therapies, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
| | - Woong Jin Cho
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Hyemin Kang
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Alvin Bacero Bello
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | | | - Yoshie Arai
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea.
| |
Collapse
|
5
|
Mitchell J, Lo KWH. Small molecule-mediated regenerative engineering for craniofacial and dentoalveolar bone. Front Bioeng Biotechnol 2022; 10:1003936. [PMID: 36406208 PMCID: PMC9667056 DOI: 10.3389/fbioe.2022.1003936] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/18/2022] [Indexed: 09/29/2023] Open
Abstract
The comprehensive reconstruction of extensive craniofacial and dentoalveolar defects remains a major clinical challenge to this day, especially in complex medical cases involving cancer, cranioplasty, and traumatic injury. Currently, osteogenic small molecule-based compounds have been explored extensively to repair and regenerate bone tissue because of their unique advantages. Over the past few years, a number of small molecules with the potential of craniofacial and periodontal bone tissue regeneration have been reported in literature. In this review, we discuss current progress using small molecules to regulate cranial and periodontal bone regeneration. Future directions of craniofacial bone regenerative engineering using the small molecule-based compounds will be discussed as well.
Collapse
Affiliation(s)
- Juan Mitchell
- School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Kevin W. H. Lo
- School of Medicine, Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT, United States
- Department of Medicine, Division of Endocrinology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
- Department of Biomedical Engineering, School of Engineering, University of Connecticut, Storrs, CT, United States
- School of Engineering, Institute of Materials Science (IMS), University of Connecticut, Storrs, CT, United States
| |
Collapse
|
6
|
Kim YH, Dawson JI, Oreffo ROC, Tabata Y, Kumar D, Aparicio C, Mutreja I. Gelatin Methacryloyl Hydrogels for Musculoskeletal Tissue Regeneration. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9070332. [PMID: 35877383 PMCID: PMC9311920 DOI: 10.3390/bioengineering9070332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 12/30/2022]
Abstract
Musculoskeletal disorders are a significant burden on the global economy and public health. Hydrogels have significant potential for enhancing the repair of damaged and injured musculoskeletal tissues as cell or drug delivery systems. Hydrogels have unique physicochemical properties which make them promising platforms for controlling cell functions. Gelatin methacryloyl (GelMA) hydrogel in particular has been extensively investigated as a promising biomaterial due to its tuneable and beneficial properties and has been widely used in different biomedical applications. In this review, a detailed overview of GelMA synthesis, hydrogel design and applications in regenerative medicine is provided. After summarising recent progress in hydrogels more broadly, we highlight recent advances of GelMA hydrogels in the emerging fields of musculoskeletal drug delivery, involving therapeutic drugs (e.g., growth factors, antimicrobial molecules, immunomodulatory drugs and cells), delivery approaches (e.g., single-, dual-release system), and material design (e.g., addition of organic or inorganic materials, 3D printing). The review concludes with future perspectives and associated challenges for developing local drug delivery for musculoskeletal applications.
Collapse
Affiliation(s)
- Yang-Hee Kim
- Bone and Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, UK; (J.I.D.); (R.O.C.O.)
- Correspondence: (Y.-H.K.); (I.M.); Tel.: +44-2381-203293 (Y.-H.K.); +1-(612)7605790 (I.M.)
| | - Jonathan I. Dawson
- Bone and Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, UK; (J.I.D.); (R.O.C.O.)
| | - Richard O. C. Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, UK; (J.I.D.); (R.O.C.O.)
| | - Yasuhiko Tabata
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8501, Japan;
| | - Dhiraj Kumar
- Division of Pediatric Dentistry, School of Dentistry, University of Minnesota, Minneapolis, MN 55812, USA;
| | - Conrado Aparicio
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Science, University of Minnesota, Minneapolis, MN 55455, USA;
- Division of Basic Research, Faculty of Odontology UIC Barcelona—Universitat Internacional de Catalunya, 08017 Barcelona, Spain
- BIST—Barcelona Institute for Science and Technology, 08195 Barcelona, Spain
| | - Isha Mutreja
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Science, University of Minnesota, Minneapolis, MN 55455, USA;
- Correspondence: (Y.-H.K.); (I.M.); Tel.: +44-2381-203293 (Y.-H.K.); +1-(612)7605790 (I.M.)
| |
Collapse
|
7
|
Wassif RK, Elkayal M, Shamma RN, Elkheshen SA. Recent advances in the local antibiotics delivery systems for management of osteomyelitis. Drug Deliv 2021; 28:2392-2414. [PMID: 34755579 PMCID: PMC8583938 DOI: 10.1080/10717544.2021.1998246] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chronic osteomyelitis is a challenging disease due to its serious rates of mortality and morbidity while the currently available treatment strategies are suboptimal. In contrast to the adopted systemic treatment approaches after surgical debridement in chronic osteomyelitis, local drug delivery systems are receiving great attention in the recent decades. Local drug delivery systems using special carriers have the pros of enhancing the feasibility of penetration of antimicrobial agents to bone tissues, providing sustained release and localized concentrations of the antimicrobial agents in the infected area while avoiding the systemic side effects and toxicity. Most important, the incorporation of osteoinductive and osteoconductive materials in these systems assists bones proliferation and differentiation, hence the generation of new bone materials is enhanced. Some of these systems can also provide mechanical support for the long bones during the healing process. Most important, if the local systems are designed to be injectable to the affected site and biodegradable, they will reduce the level of invasion required for implantation and can win the patients’ compliance and reduce the healing period. They will also allow multiple injections during the course of therapy to guard against the side effect of the long-term systemic therapy. The current review presents different available approaches for delivering antimicrobial agents for the treatment of osteomyelitis focusing on the recent advances in researches for local delivery of antibiotics.HIGHLIGHTS Chronic osteomyelitis is a challenging disease due to its serious mortality and morbidity rates and limited effective treatment options. Local drug delivery systems are receiving great attention in the recent decades. Osteoinductive and osteoconductive materials in the local systems assists bones proliferation and differentiation Local systems can be designed to provide mechanical support for the long bones during the healing process. Designing the local system to be injectable to the affected site and biodegradable will reduces the level of invasion and win the patients’ compliance.
Collapse
Affiliation(s)
- Reem Khaled Wassif
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Maha Elkayal
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Rehab Nabil Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Seham A Elkheshen
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Zhang CY, Yang CQ, Chen Q, Liu J, Zhang G, Dong C, Liu XL, Farooq HMU, Zhao SQ, Luo LH, Jiang SF, Niu YB, Yin DC. miR-194-Loaded Gelatin Nanospheres Target MEF2C to Suppress Muscle Atrophy in a Mechanical Unloading Model. Mol Pharm 2021; 18:2959-2973. [PMID: 34189919 DOI: 10.1021/acs.molpharmaceut.1c00121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Muscle atrophy usually occurs under mechanical unloading, which increases the risk of injury to reduce the functionality of the moving system, while there is still no effective therapy until now. It was found that miR-194 was significantly downregulated in a muscle atrophy model, and its target protein was the myocyte enhancer factor 2C (MEF2C). miR-194 could promote muscle differentiation and also inhibit ubiquitin ligases, thus miR-194 could be used as a nucleic acid drug to treat muscle atrophy, whereas miRNA was unstable in vivo, limiting its application as a therapeutic drug. A gelatin nanosphere (GN) delivery system was applied for the first time to load exogenous miRNA here. Exogenous miR-194 was loaded in GNs and injected into the muscle atrophy model. It demonstrated that the muscle fiber cross-sectional area, in situ muscle contractile properties, and myogenic markers were increased significantly after treatment. It proposed miR-194 loaded in GNs as an effective treatment for muscle atrophy by promoting muscle differentiation and inhibiting ubiquitin ligase activity. Moreover, the developed miRNA delivery system, taking advantage of its tunable composition, degradation rate, and capacity to load various drug molecules with high dosage, is considered a promising platform to achieve precise treatment of muscle atrophy-related diseases.
Collapse
Affiliation(s)
- Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Chang-Qing Yang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Qiang Chen
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Jie Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Ge Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Chen Dong
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Xin-Li Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Hafiz Muhammad Umer Farooq
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Shi-Qi Zhao
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Li-Heng Luo
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Shan-Feng Jiang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Yin-Bo Niu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China
| |
Collapse
|
9
|
Dong Z, Meng X, Yang W, Zhang J, Sun P, Zhang H, Fang X, Wang DA, Fan C. Progress of gelatin-based microspheres (GMSs) as delivery vehicles of drug and cell. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111949. [PMID: 33641932 DOI: 10.1016/j.msec.2021.111949] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
Gelatin has various attractive features as biomedical materials, for instance, biocompatibility, low immunogenicity, biodegradability, and ease of manipulation. In recent years, various gelatin-based microspheres (GMSs) have been fabricated with innovative technologies to serve as sustained delivery vehicles of drugs and genetic materials as well as beneficial bacteria. Moreover, GMSs have exhibited promising potentials to act as both cell carriers and 3D scaffold components in tissue engineering and regenerative medicine, which not only exhibit excellent injectability but also could be integrated into a macroscale construct with the laden cells. Herein, we aim to thoroughly summarize the recent progress in the preparations and biomedical applications of GMSs and then to point out the research direction in future. First, various methods for the fabrication of GMSs will be described. Second, the recent use of GMSs in tumor embolization and in the delivery of cells, drugs, and genetic material as well as bacteria will be presented. Finally, several key factors that may enhance the improvement of GMSs were suggested as delivery vehicles.
Collapse
Affiliation(s)
- Zuoxiang Dong
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China; Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Xinyue Meng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China
| | - Wei Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China
| | - Jinfeng Zhang
- Department of Surgery, Songshan Hospital of Qingdao University, Qingdao 266021, Shandong, China
| | - Peng Sun
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Huawei Zhang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region; Shenzhen Research Institute, City University of Hong Kong, Shenzhen Hi-tech Industrial Park, Shenzhen, Guangdong 518057, China; Karolinska Institute Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong Special Administrative Region.
| | - Changjiang Fan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China.
| |
Collapse
|
10
|
Mizukami Y, Moriya A, Takahashi Y, Shimizu K, Konishi S, Takakura Y, Nishikawa M. Incorporation of Gelatin Microspheres into HepG2 Human Hepatocyte Spheroids for Functional Improvement through Improved Oxygen Supply to Spheroid Core. Biol Pharm Bull 2020; 43:1220-1225. [PMID: 32741942 DOI: 10.1248/bpb.b20-00141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The multicellular spheroid three-dimensional cell culture system can be used as a formulation for cell-based therapy. However, the viability and functions of the cells in the core region of the spheroid tend to decrease because of limited oxygen supply. In this study, we incorporated gelatin microspheres (GMS) into HepG2 human hepatocyte spheroids to allow oxygen to reach the spheroid core. GMS with an approximate diameter of 37 µm were fabricated by water-in-oil emulsification followed by freeze drying. GMS-containing HepG2 spheroids (GMS/HepG2 spheroids) were prepared by incubation of the cells with GMS at various mixing ratios in agarose gel-based microwells. Increasing the GMS ratio increased the diameter of the spheroids, and few spheroids formed with excess GMS. HepG2 cells in the GMS/HepG2 spheroids were more oxygenated than those in the GMS-free spheroids. GMS incorporation increased the viability of HepG2 cells in the spheroids and increased the CYP1A1 activity of the cells to metabolize 7-ethoxyresorufin, although mRNA expression of the CYP1A1 gene was hardly affected by GMS incorporation. These results indicate that incorporating GMS into HepG2 spheroids improves the hypoxic microenvironment in the spheroids and increases cell viability and CYP1A1 metabolic activity.
Collapse
Affiliation(s)
- Yuya Mizukami
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Ai Moriya
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Kazunori Shimizu
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University
| | - Satoshi Konishi
- Department of Mechanical Engineering, Graduate School of Science and Engineering, Ritsumeikan University
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Makiya Nishikawa
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University.,Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
11
|
Fukuba S, Akizuki T, Hoshi S, Matsuura T, Shujaa Addin A, Okada M, Tabata Y, Matsui M, Tabata MJ, Sugiura‐Nakazato M, Izumi Y. Comparison between different isoelectric points of biodegradable gelatin sponges incorporating β‐tricalcium phosphate and recombinant human fibroblast growth factor‐2 for ridge augmentation: A preclinical study of saddle‐type defects in dogs. J Periodontal Res 2018; 54:278-285. [DOI: 10.1111/jre.12628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/17/2018] [Accepted: 10/23/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Shunsuke Fukuba
- Department of PeriodontologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental University Tokyo Japan
| | - Tatsuya Akizuki
- Department of PeriodontologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental University Tokyo Japan
- PeriodonticsDental HospitalTokyo Medical and Dental University Tokyo Japan
| | - Shu Hoshi
- Department of PeriodontologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental University Tokyo Japan
| | - Takanori Matsuura
- Department of PeriodontologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental University Tokyo Japan
- PeriodonticsDental HospitalTokyo Medical and Dental University Tokyo Japan
| | - Ammar Shujaa Addin
- Department of PeriodontologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental University Tokyo Japan
| | - Munehiro Okada
- Department of PeriodontologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental University Tokyo Japan
| | - Yasuhiko Tabata
- Laboratory of BiomaterialsDepartment of Regeneration Science and EngineeringInstitute for Frontier Life and Medical SciencesKyoto University Kyoto Japan
| | - Makoto Matsui
- Polymer Chemistry DivisionLaboratory for Chemistry and Life ScienceInstitute of Innovative ResearchTokyo Institute of Technology Tokyo Japan
| | - Makoto J. Tabata
- Department of Biostructural ScienceGraduate School of Medical and Dental SciencesTokyo Medical and Dental University Tokyo Japan
| | - Makoto Sugiura‐Nakazato
- Department of Biostructural ScienceGraduate School of Medical and Dental SciencesTokyo Medical and Dental University Tokyo Japan
| | - Yuichi Izumi
- Department of PeriodontologyGraduate School of Medical and Dental SciencesTokyo Medical and Dental University Tokyo Japan
| |
Collapse
|
12
|
Zhang X, Song J, Klymov A, Zhang Y, de Boer L, Jansen JA, van den Beucken JJ, Yang F, Zaat SA, Leeuwenburgh SC. Monitoring local delivery of vancomycin from gelatin nanospheres in zebrafish larvae. Int J Nanomedicine 2018; 13:5377-5394. [PMID: 30254441 PMCID: PMC6143646 DOI: 10.2147/ijn.s168959] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Infections such as biomaterial-associated infection and osteomyelitis are often associated with intracellular survival of bacteria (eg, Staphylococcus aureus). Treatment of these infections remains a major challenge due to the low intracellular efficacy of many antibiotics. Therefore, local delivery systems are urgently required to improve the therapeutic efficacy of antibiotics by enabling their intracellular delivery. Purpose To assess the potential of gelatin nanospheres as carriers for local delivery of vancomycin into macrophages of zebrafish larvae in vivo and into THP-1-derived macrophages in vitro using fluorescence microscopy. Materials and methods Fluorescently labeled gelatin nanospheres were prepared and injected into transgenic zebrafish larvae with fluorescent macrophages. Both the biodistribution of gelatin nanospheres in zebrafish larvae and the co-localization of vancomycin-loaded gelatin nanospheres with zebrafish macrophages in vivo and uptake by THP-1-derived macrophages in vitro were studied. In addition, the effect of treatment with vancomycin-loaded gelatin nanospheres on survival of S. aureus-infected zebrafish larvae was investigated. Results Internalization of vancomycin-loaded gelatin nanospheres by macrophages was observed qualitatively both in vivo and in vitro. Systemically delivered vancomycin, on the other hand, was hardly internalized by macrophages without the use of gelatin nanospheres. Treatment with a single dose of vancomycin-loaded gelatin nanospheres delayed the mortality of S. aureus-infected zebrafish larvae, indicating the improved therapeutic efficacy of vancomycin against (intracellular) S. aureus infection in vivo. Conclusion The present study demonstrates that gelatin nanospheres can be used to facilitate local and intracellular delivery of vancomycin.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands
| | - Jiankang Song
- Department of Biomaterials, Radboud University Medical Centre, Nijmegen, the Netherlands,
| | - Alexey Klymov
- Department of Biomaterials, Radboud University Medical Centre, Nijmegen, the Netherlands,
| | - Yang Zhang
- Department of Biomaterials, Radboud University Medical Centre, Nijmegen, the Netherlands,
| | - Leonie de Boer
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - John A Jansen
- Department of Biomaterials, Radboud University Medical Centre, Nijmegen, the Netherlands,
| | | | - Fang Yang
- Department of Biomaterials, Radboud University Medical Centre, Nijmegen, the Netherlands,
| | - Sebastian Aj Zaat
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Sander Cg Leeuwenburgh
- Department of Biomaterials, Radboud University Medical Centre, Nijmegen, the Netherlands,
| |
Collapse
|
13
|
Moshiri A, Sharifi AM, Oryan A. Role of Simvastatin on fracture healing and osteoporosis: a systematic review on in vivo investigations. Clin Exp Pharmacol Physiol 2017; 43:659-84. [PMID: 27061579 DOI: 10.1111/1440-1681.12577] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 01/15/2023]
Abstract
Simvastatin is a lipid lowering drug whose beneficial role on bone metabolism was discovered in 1999. Several in vivo studies evaluated its role on osteoporosis and fracture healing, however, controversial results are seen in the literature. For this reason, Simvastatin has not been the focus of any clinical trials as yet. This systematic review clears the mechanisms of action of Simvastatin on bone metabolism and focuses on in vivo investigations that have evaluated its role on osteoporosis and fracture repair to find out (i) whether Simvastatin is effective on treatment of osteoporosis and fracture repair, and (ii) which of the many available protocols may have the ability to be translated in the clinical setting. Simvastatin induces osteoinduction by increasing osteoblast activity and differentiation and inhibiting their apoptosis. It also reduces osteoclastogenesis by decreasing both the number and activity of osteoclasts and their differentiation. Controversial results between the in vivo studies are mostly due to the differences in the route of administration, dose, dosage and carrier type. Local delivery of Simvastatin through controlled drug delivery systems with much lower doses and dosages than the systemic route seems to be the most valuable option in fracture healing. However, systemic delivery of Simvastatin with much higher doses and dosages than the clinical ones seems to be effective in managing osteoporosis. Simvastatin, in a particular range of doses and dosages, may be beneficial in managing osteoporosis and fracture injuries. This review showed that Simvastatin is effective in the treatment of osteoporosis and fracture healing.
Collapse
Affiliation(s)
- Ali Moshiri
- RAZI Drug Research Centre, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammad Sharifi
- RAZI Drug Research Centre, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Tissue Engineering Group, Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz, Iran
| |
Collapse
|
14
|
Song J, Klymov A, Shao J, Zhang Y, Ji W, Kolwijck E, Jansen JA, Leeuwenburgh SCG, Yang F. Electrospun Nanofibrous Silk Fibroin Membranes Containing Gelatin Nanospheres for Controlled Delivery of Biomolecules. Adv Healthc Mater 2017; 6. [PMID: 28464454 DOI: 10.1002/adhm.201700014] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 01/24/2017] [Indexed: 12/21/2022]
Abstract
Development of novel and effective drug delivery systems for controlled release of bioactive molecules is of critical importance in the field of regenerative medicine. Here, oppositely charged gelatin nanospheres are incorporated into silk fibroin nanofibers through a colloidal electrospinning technique. A novel fibrous nano-in-nano drug delivery system is fabricated without the use of any organic solvent. The distribution of fluorescently labeled gelatin A and B nanospheres inside the nanofibers can be fine-tuned by simple adjustment of the weight ratio between the nanospheres and the relative feeding rate of core and shell solutions containing nanospheres by using single and coaxial nozzle electrospinning, respectively. Incorporation of vancomycin-loaded gelatin B nanospheres into the silk fibroin nanofibrous membranes results in a more sustained release of vancomycin, compared to the gelatin nanospheres free membranes. In addition, these membranes exhibit excellent and prolonged antibacterial effects against Staphylococcus aureus. Moreover, these membranes support the attachment, spreading, and proliferation of periodontal ligament cells. These results suggest that the beneficial properties of gelatin nanospheres can be exploited to improve the biological functionality of electrospun nanofibrous silk fibroin membranes.
Collapse
Affiliation(s)
- Jiankang Song
- Department of Biomaterials; Radboud University Medical Centre; P.O. Box 9101 6500 HB Nijmegen The Netherlands
| | - Alexey Klymov
- Department of Biomaterials; Radboud University Medical Centre; P.O. Box 9101 6500 HB Nijmegen The Netherlands
| | - Jinlong Shao
- Department of Biomaterials; Radboud University Medical Centre; P.O. Box 9101 6500 HB Nijmegen The Netherlands
| | - Yang Zhang
- Department of Biomaterials; Radboud University Medical Centre; P.O. Box 9101 6500 HB Nijmegen The Netherlands
| | - Wei Ji
- Prometheus; Division of Skeletal Tissue Engineering; Katholieke Universiteit Leuven; 3000 Leuven Belgium
- Skeletal Biology and Engineering Research Center; Department of Development and Regeneration; Katholieke Universiteit Leuven; 3000 Leuven Belgium
| | - Eva Kolwijck
- Department of Medical Microbiology; Radboud University Medical Centre; 6500 HB Nijmegen The Netherlands
| | - John A. Jansen
- Department of Biomaterials; Radboud University Medical Centre; P.O. Box 9101 6500 HB Nijmegen The Netherlands
| | - Sander C. G. Leeuwenburgh
- Department of Biomaterials; Radboud University Medical Centre; P.O. Box 9101 6500 HB Nijmegen The Netherlands
| | - Fang Yang
- Department of Biomaterials; Radboud University Medical Centre; P.O. Box 9101 6500 HB Nijmegen The Netherlands
| |
Collapse
|
15
|
Hwang LA, Kuo CY, Yang JW, Chiang WF. Autotransplantation of Odontoma-Associated Impacted Teeth-A Treatment Strategy for Satisfying Immediate Esthetic Demands: A Case Report. J Oral Maxillofac Surg 2017; 75:1827-1832. [PMID: 28460214 DOI: 10.1016/j.joms.2017.03.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 03/01/2017] [Accepted: 03/29/2017] [Indexed: 11/19/2022]
Abstract
Compound odontomas are common odontogenic tumors associated with permanent tooth impaction in the premaxilla. This report describes the case of a 14-year-old girl with an odontoma-associated impaction over the premaxilla that was treated using autotransplantation to satisfy an immediate esthetic demand. At postoperative follow-up conducted in the 14th month, a satisfactory cosmetic appearance with a healthy periodontal status was observed. In addition, the authors discuss the possible complications of autotransplantation and different treatment strategies for odontoma-associated impaction and for correcting bone defects in this case report. Autotransplantation for treating odontoma-associated impaction can be an alternative solution for satisfying an immediate cosmetic demand and providing a favorable outcome.
Collapse
Affiliation(s)
- Lisa Alice Hwang
- Resident, Department of Oral and Maxillofacial Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chih-Yin Kuo
- Visiting Staff, Department of Dentistry, Chi-Mei Medical Center, Liouying, Taiwan
| | - Jung-Wu Yang
- Chief, Department of Oral and Maxillofacial Surgery, Sin-Lau Hospital, Tainan, Taiwan
| | - Wei-Fan Chiang
- Chief, Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Liouying; Associate Professor, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
16
|
Song J, Chen Q, Zhang Y, Diba M, Kolwijck E, Shao J, Jansen JA, Yang F, Boccaccini AR, Leeuwenburgh SCG. Electrophoretic Deposition of Chitosan Coatings Modified with Gelatin Nanospheres To Tune the Release of Antibiotics. ACS APPLIED MATERIALS & INTERFACES 2016; 8:13785-92. [PMID: 27167424 DOI: 10.1021/acsami.6b03454] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Orthopedic and dental implants are increasingly used in the medical field in view of their high success rates. Implant-associated infections, however, still occur and are difficult to treat. To combat these infections, the application of an active coating to the implant surface is advocated as an effective strategy to facilitate sustained release of antibacterial drugs from implant surfaces. Control over this release is, however, still a major challenge. To overcome this problem, we deposited composite coatings composed of a chitosan matrix containing gelatin nanospheres loaded with antibiotics onto stainless steel plates by means of the electrophoretic deposition technique. The gelatin nanospheres were distributed homogeneously throughout the coatings. The surface roughness and wettability of the coatings could be tuned by a simple adjustment of the weight ratio between the gelatin nanospheres and chitosan. Vancomycin and moxifloxacin were released in sustained and burst-type manners, respectively, while the coatings were highly cytocompatible. The antibacterial efficacy of the coatings containing different amounts of antibiotics was tested using a zone of inhibition test against Staphylococcus aureus, which showed that the coatings containing moxifloxacin exhibited an obvious inhibition zone. The coatings containing a high amount of vancomycin were able to kill bacteria in direct contact with the implant surface. These results suggest that the antibacterial capacity of metallic implants can be tuned by orthogonal control over the release of (multiple) antibiotics from electrophoretically deposited composite coatings, which offers a new strategy to prevent orthopedic implant-associated infections.
Collapse
Affiliation(s)
- Jiankang Song
- Department of Biomaterials, Radboud University Medical Centre , Nijmegen, The Netherlands
| | - Qiang Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an 710072, China
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg , 91058 Erlangen, Germany
| | - Yang Zhang
- Department of Biomaterials, Radboud University Medical Centre , Nijmegen, The Netherlands
| | - Mani Diba
- Department of Biomaterials, Radboud University Medical Centre , Nijmegen, The Netherlands
| | - Eva Kolwijck
- Department of Medical Microbiology, Radboud University Medical Centre , Nijmegen, The Netherlands
| | - Jinlong Shao
- Department of Biomaterials, Radboud University Medical Centre , Nijmegen, The Netherlands
| | - John A Jansen
- Department of Biomaterials, Radboud University Medical Centre , Nijmegen, The Netherlands
| | - Fang Yang
- Department of Biomaterials, Radboud University Medical Centre , Nijmegen, The Netherlands
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg , 91058 Erlangen, Germany
| | | |
Collapse
|
17
|
Farbod K, Diba M, Zinkevich T, Schmidt S, Harrington MJ, Kentgens APM, Leeuwenburgh SCG. Gelatin Nanoparticles with Enhanced Affinity for Calcium Phosphate. Macromol Biosci 2016; 16:717-29. [DOI: 10.1002/mabi.201500414] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/09/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Kambiz Farbod
- Department of Biomaterials; Radboud Institute for Molecular Life Sciences; Radboud University Medical Center; Philips van Leydenlaan 25 6525 EX Nijmegen The Netherlands
| | - Mani Diba
- Department of Biomaterials; Radboud Institute for Molecular Life Sciences; Radboud University Medical Center; Philips van Leydenlaan 25 6525 EX Nijmegen The Netherlands
| | - Tatiana Zinkevich
- Department of Solid State NMR; Institute for Molecules and Materials; Radboud University; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Stephan Schmidt
- Biophysical Chemistry Group; Institute of Biochemistry; Faculty of Biosciences; Pharmacy and Psychology; Universität Leipzig; D-04103 Leipzig Germany
- Institute of Organic and Macromolecular Chemistry; Heinrich-Heine-University Düsseldorf; Universitätsstrasse 1 D-40225 Düsseldorf Germany
| | - Matthew J. Harrington
- Department of Biomaterials; Max Planck Institute for Colloids and Interfaces; D-14424 Potsdam Germany
| | - Arno P. M. Kentgens
- Department of Solid State NMR; Institute for Molecules and Materials; Radboud University; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Sander C. G. Leeuwenburgh
- Department of Biomaterials; Radboud Institute for Molecular Life Sciences; Radboud University Medical Center; Philips van Leydenlaan 25 6525 EX Nijmegen The Netherlands
| |
Collapse
|
18
|
Grijalvo S, Mayr J, Eritja R, Díaz DD. Biodegradable liposome-encapsulated hydrogels for biomedical applications: a marriage of convenience. Biomater Sci 2016; 4:555-74. [DOI: 10.1039/c5bm00481k] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Liposome-encapsulated hydrogels have emerged as an attractive strategy for medical and pharmaceutical applications.
Collapse
Affiliation(s)
- Santiago Grijalvo
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC)
- Spain
- Biomedical Research Networking Center in Bioengineering
- Biomaterials and Nanomedicine (CIBER BBN)
- Spain
| | - Judith Mayr
- Institute of Organic Chemistry
- University of Regensburg
- D-93040 Regensburg
- Germany
| | - Ramon Eritja
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC)
- Spain
- Biomedical Research Networking Center in Bioengineering
- Biomaterials and Nanomedicine (CIBER BBN)
- Spain
| | - David Díaz Díaz
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC)
- Spain
- Institute of Organic Chemistry
- University of Regensburg
- D-93040 Regensburg
| |
Collapse
|
19
|
Song J, Odekerken JCE, Löwik DWPM, López-Pérez PM, Welting TJM, Yang F, Jansen JA, Leeuwenburgh SCG. Influence of the Molecular Weight and Charge of Antibiotics on Their Release Kinetics From Gelatin Nanospheres. Macromol Biosci 2015; 15:901-11. [PMID: 25771899 DOI: 10.1002/mabi.201500005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/09/2015] [Indexed: 01/04/2023]
Abstract
In this study, we investigated the fundamental relationship between the physicochemical characteristics of antibiotics and the kinetics of their release from gelatin nanospheres. We observed that antibiotics of high molecular weight (colistin and vancomycin) were released in a sustained manner from oppositely charged gelatin carriers for more than 14 d, as opposed to antibiotics of low molecular weight (gentamicin and moxifloxacin) which were released in a burst-like manner. The release kinetics of positively charged colistin strongly correlated with the rate of the enzymatic degradation of gelatin. To elucidate the differences among release kinetics of antibiotics, we explored the mechanism of interactions between antibiotics and gelatin nanospheres by monitoring the kinetics of release of antibiotics as a function of pH, ionic strength, and detergent concentrations. These studies revealed that the interactions between antibiotics and gelatin nanospheres were mainly dominated by (i) strong electrostatic forces for colistin; (ii) strong hydrophobic and electrostatic forces for vancomycin; (iii) weak electrostatic and hydrophobic forces for gentamicin; and (iv) weak hydrophobic forces for moxifloxacin. These results confirm that release of antibiotics from gelatin nanospheres strongly depends on the physicochemical characteristics of the antibiotics.
Collapse
Affiliation(s)
- Jiankang Song
- Department of Biomaterials, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Jim C E Odekerken
- Department of Orthopedic Surgery, Laboratory for Experimental Orthopedics, CAPHRI School for Public Health and Primary Care, Maastricht University Medical Centre, The Netherlands
| | - Dennis W P M Löwik
- Department of Bio-Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, The Netherlands
| | - Paula M López-Pérez
- Department of Biomaterials, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Tim J M Welting
- Department of Orthopedic Surgery, Laboratory for Experimental Orthopedics, CAPHRI School for Public Health and Primary Care, Maastricht University Medical Centre, The Netherlands
| | - Fang Yang
- Department of Biomaterials, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - John A Jansen
- Department of Biomaterials, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Sander C G Leeuwenburgh
- Department of Biomaterials, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|